Solve for x, y, z
z=2
Share
Copied to clipboard
-\frac{6}{7}x-\frac{12}{7}-4=-1
Consider the first equation. Use the distributive property to multiply -\frac{3}{7} by 2x+4.
-\frac{6}{7}x-\frac{40}{7}=-1
Subtract 4 from -\frac{12}{7} to get -\frac{40}{7}.
-\frac{6}{7}x=-1+\frac{40}{7}
Add \frac{40}{7} to both sides.
-\frac{6}{7}x=\frac{33}{7}
Add -1 and \frac{40}{7} to get \frac{33}{7}.
x=\frac{33}{7}\left(-\frac{7}{6}\right)
Multiply both sides by -\frac{7}{6}, the reciprocal of -\frac{6}{7}.
x=-\frac{11}{2}
Multiply \frac{33}{7} and -\frac{7}{6} to get -\frac{11}{2}.
y=-3+5
Consider the second equation. Multiply -3 and 1 to get -3.
y=2
Add -3 and 5 to get 2.
z=2
Consider the third equation. Insert the known values of variables into the equation.
x=-\frac{11}{2} y=2 z=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}