Solve for z, j, k, l, m, n
n=2i
Share
Copied to clipboard
z^{2}-2iz+3=z\left(z-i\right)
Consider the first equation. Use the distributive property to multiply z+i by z-3i and combine like terms.
z^{2}-2iz+3=z^{2}-iz
Use the distributive property to multiply z by z-i.
z^{2}-2iz+3-z^{2}=-iz
Subtract z^{2} from both sides.
-2iz+3=-iz
Combine z^{2} and -z^{2} to get 0.
-2iz+3-\left(-iz\right)=0
Subtract -iz from both sides.
-iz+3=0
Combine -2iz and iz to get -iz.
-iz=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
z=\frac{-3}{-i}
Divide both sides by -i.
z=\frac{-3i}{1}
Multiply both numerator and denominator of \frac{-3}{-i} by imaginary unit i.
z=-3i
Divide -3i by 1 to get -3i.
j=2i
Consider the second equation. Calculate 1+i to the power of 2 and get 2i.
k=2i
Consider the third equation. Insert the known values of variables into the equation.
l=2i
Consider the fourth equation. Insert the known values of variables into the equation.
m=2i
Consider the fifth equation. Insert the known values of variables into the equation.
n=2i
Consider the equation (6). Insert the known values of variables into the equation.
z=-3i j=2i k=2i l=2i m=2i n=2i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}