Solve for c, x, y, z, a, b, d
d=24
Share
Copied to clipboard
\frac{1}{3}y=8
Consider the second equation. Subtract 8 from 16 to get 8.
y=8\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
y=24
Multiply 8 and 3 to get 24.
x=8\times 3
Consider the third equation. Multiply both sides by 3, the reciprocal of \frac{1}{3}.
x=24
Multiply 8 and 3 to get 24.
z=24
Consider the fourth equation. Insert the known values of variables into the equation.
a=24
Consider the fifth equation. Insert the known values of variables into the equation.
b=24
Consider the equation (6). Insert the known values of variables into the equation.
d=24
Consider the equation (7). Insert the known values of variables into the equation.
c\times \frac{1}{3}\times 24+8=16
Consider the first equation. Insert the known values of variables into the equation.
c\times 8+8=16
Multiply \frac{1}{3} and 24 to get 8.
c\times 8=16-8
Subtract 8 from both sides.
c\times 8=8
Subtract 8 from 16 to get 8.
c=\frac{8}{8}
Divide both sides by 8.
c=1
Divide 8 by 8 to get 1.
c=1 x=24 y=24 z=24 a=24 b=24 d=24
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}