Solve for x, y, z, a, b
b = \frac{40}{3} = 13\frac{1}{3} \approx 13.333333333
Share
Copied to clipboard
72=6\left(x+5\right)-\left(3x-2\right)
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 2,12.
72=6x+30-\left(3x-2\right)
Use the distributive property to multiply 6 by x+5.
72=6x+30-3x+2
To find the opposite of 3x-2, find the opposite of each term.
72=3x+30+2
Combine 6x and -3x to get 3x.
72=3x+32
Add 30 and 2 to get 32.
3x+32=72
Swap sides so that all variable terms are on the left hand side.
3x=72-32
Subtract 32 from both sides.
3x=40
Subtract 32 from 72 to get 40.
x=\frac{40}{3}
Divide both sides by 3.
y=\frac{40}{3}
Consider the second equation. Insert the known values of variables into the equation.
z=\frac{40}{3}
Consider the third equation. Insert the known values of variables into the equation.
a=\frac{40}{3}
Consider the fourth equation. Insert the known values of variables into the equation.
b=\frac{40}{3}
Consider the fifth equation. Insert the known values of variables into the equation.
x=\frac{40}{3} y=\frac{40}{3} z=\frac{40}{3} a=\frac{40}{3} b=\frac{40}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}