Solve for x, y, z
z=80
Share
Copied to clipboard
25x^{2}-20x+4=\left(5x-4\right)\left(5x+4\right)-\left(12x-28\right)
Consider the first equation. Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-2\right)^{2}.
25x^{2}-20x+4=\left(5x\right)^{2}-16-\left(12x-28\right)
Consider \left(5x-4\right)\left(5x+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
25x^{2}-20x+4=5^{2}x^{2}-16-\left(12x-28\right)
Expand \left(5x\right)^{2}.
25x^{2}-20x+4=25x^{2}-16-\left(12x-28\right)
Calculate 5 to the power of 2 and get 25.
25x^{2}-20x+4=25x^{2}-16-12x+28
To find the opposite of 12x-28, find the opposite of each term.
25x^{2}-20x+4=25x^{2}+12-12x
Add -16 and 28 to get 12.
25x^{2}-20x+4-25x^{2}=12-12x
Subtract 25x^{2} from both sides.
-20x+4=12-12x
Combine 25x^{2} and -25x^{2} to get 0.
-20x+4+12x=12
Add 12x to both sides.
-8x+4=12
Combine -20x and 12x to get -8x.
-8x=12-4
Subtract 4 from both sides.
-8x=8
Subtract 4 from 12 to get 8.
x=\frac{8}{-8}
Divide both sides by -8.
x=-1
Divide 8 by -8 to get -1.
y=4\times 20
Consider the second equation. Multiply 2 and 2 to get 4.
y=80
Multiply 4 and 20 to get 80.
z=80
Consider the third equation. Insert the known values of variables into the equation.
x=-1 y=80 z=80
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}