Skip to main content
Solve for x, y, z
Tick mark Image

Share

30\left(\frac{3\times 3+1}{3}\times \frac{9}{10}+\frac{x}{5}\right)\left(3\times 7+1\right)-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Consider the first equation. Multiply both sides of the equation by 210, the least common multiple of 3,10,5,7.
30\left(\frac{9+1}{3}\times \frac{9}{10}+\frac{x}{5}\right)\left(3\times 7+1\right)-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 3 and 3 to get 9.
30\left(\frac{10}{3}\times \frac{9}{10}+\frac{x}{5}\right)\left(3\times 7+1\right)-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Add 9 and 1 to get 10.
30\left(3+\frac{x}{5}\right)\left(3\times 7+1\right)-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply \frac{10}{3} and \frac{9}{10} to get 3.
30\left(3+\frac{x}{5}\right)\left(21+1\right)-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 3 and 7 to get 21.
30\left(3+\frac{x}{5}\right)\times 22-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Add 21 and 1 to get 22.
660\left(3+\frac{x}{5}\right)-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 30 and 22 to get 660.
1980+660\times \frac{x}{5}-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Use the distributive property to multiply 660 by 3+\frac{x}{5}.
1980+132x-21\left(15\times 10+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Cancel out 5, the greatest common factor in 660 and 5.
1980+132x-21\left(150+3\right)=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 15 and 10 to get 150.
1980+132x-21\times 153=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Add 150 and 3 to get 153.
1980+132x-3213=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply -21 and 153 to get -3213.
-1233+132x=7\left(6\times 10+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Subtract 3213 from 1980 to get -1233.
-1233+132x=7\left(60+7\right)\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 6 and 10 to get 60.
-1233+132x=7\times 67\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Add 60 and 7 to get 67.
-1233+132x=469\times 1\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 7 and 67 to get 469.
-1233+132x=469\left(3\times 3+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 469 and 1 to get 469.
-1233+132x=469\left(9+1\right)-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 3 and 3 to get 9.
-1233+132x=469\times 10-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Add 9 and 1 to get 10.
-1233+132x=4690-7\left(6\times 10+7\right)\left(12\times 3+1\right)
Multiply 469 and 10 to get 4690.
-1233+132x=4690-7\left(60+7\right)\left(12\times 3+1\right)
Multiply 6 and 10 to get 60.
-1233+132x=4690-7\times 67\left(12\times 3+1\right)
Add 60 and 7 to get 67.
-1233+132x=4690-469\left(12\times 3+1\right)
Multiply 7 and 67 to get 469.
-1233+132x=4690-469\left(36+1\right)
Multiply 12 and 3 to get 36.
-1233+132x=4690-469\times 37
Add 36 and 1 to get 37.
-1233+132x=4690-17353
Multiply 469 and 37 to get 17353.
-1233+132x=-12663
Subtract 17353 from 4690 to get -12663.
132x=-12663+1233
Add 1233 to both sides.
132x=-11430
Add -12663 and 1233 to get -11430.
x=\frac{-11430}{132}
Divide both sides by 132.
x=-\frac{1905}{22}
Reduce the fraction \frac{-11430}{132} to lowest terms by extracting and canceling out 6.
y=-\frac{1905}{22}
Consider the second equation. Insert the known values of variables into the equation.
z=-\frac{1905}{22}
Consider the third equation. Insert the known values of variables into the equation.
x=-\frac{1905}{22} y=-\frac{1905}{22} z=-\frac{1905}{22}
The system is now solved.