Solve for x, y, z
z=0
Share
Copied to clipboard
x+96=12\left(x+2\right)\times 4
Consider the first equation. Multiply both sides of the equation by 12.
x+96=48\left(x+2\right)
Multiply 12 and 4 to get 48.
x+96=48x+96
Use the distributive property to multiply 48 by x+2.
x+96-48x=96
Subtract 48x from both sides.
-47x+96=96
Combine x and -48x to get -47x.
-47x=96-96
Subtract 96 from both sides.
-47x=0
Subtract 96 from 96 to get 0.
x=0
Divide both sides by -47. Zero divided by any non-zero number gives zero.
x=0 y=0 z=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}