Solve for x, y, z
z=529
Share
Copied to clipboard
\left(3x+6\right)\left(x+3\right)-\left(3x+3\right)\left(2x+5\right)=\left(x+2\right)\left(x-5\right)-\left(x+1\right)\left(4x-3\right)
Consider the first equation. Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 3\left(x+1\right)\left(x+2\right), the least common multiple of x+1,x+2,3x+3,3x+6.
3x^{2}+15x+18-\left(3x+3\right)\left(2x+5\right)=\left(x+2\right)\left(x-5\right)-\left(x+1\right)\left(4x-3\right)
Use the distributive property to multiply 3x+6 by x+3 and combine like terms.
3x^{2}+15x+18-\left(6x^{2}+21x+15\right)=\left(x+2\right)\left(x-5\right)-\left(x+1\right)\left(4x-3\right)
Use the distributive property to multiply 3x+3 by 2x+5 and combine like terms.
3x^{2}+15x+18-6x^{2}-21x-15=\left(x+2\right)\left(x-5\right)-\left(x+1\right)\left(4x-3\right)
To find the opposite of 6x^{2}+21x+15, find the opposite of each term.
-3x^{2}+15x+18-21x-15=\left(x+2\right)\left(x-5\right)-\left(x+1\right)\left(4x-3\right)
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}-6x+18-15=\left(x+2\right)\left(x-5\right)-\left(x+1\right)\left(4x-3\right)
Combine 15x and -21x to get -6x.
-3x^{2}-6x+3=\left(x+2\right)\left(x-5\right)-\left(x+1\right)\left(4x-3\right)
Subtract 15 from 18 to get 3.
-3x^{2}-6x+3=x^{2}-3x-10-\left(x+1\right)\left(4x-3\right)
Use the distributive property to multiply x+2 by x-5 and combine like terms.
-3x^{2}-6x+3=x^{2}-3x-10-\left(4x^{2}+x-3\right)
Use the distributive property to multiply x+1 by 4x-3 and combine like terms.
-3x^{2}-6x+3=x^{2}-3x-10-4x^{2}-x+3
To find the opposite of 4x^{2}+x-3, find the opposite of each term.
-3x^{2}-6x+3=-3x^{2}-3x-10-x+3
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-6x+3=-3x^{2}-4x-10+3
Combine -3x and -x to get -4x.
-3x^{2}-6x+3=-3x^{2}-4x-7
Add -10 and 3 to get -7.
-3x^{2}-6x+3+3x^{2}=-4x-7
Add 3x^{2} to both sides.
-6x+3=-4x-7
Combine -3x^{2} and 3x^{2} to get 0.
-6x+3+4x=-7
Add 4x to both sides.
-2x+3=-7
Combine -6x and 4x to get -2x.
-2x=-7-3
Subtract 3 from both sides.
-2x=-10
Subtract 3 from -7 to get -10.
x=\frac{-10}{-2}
Divide both sides by -2.
x=5
Divide -10 by -2 to get 5.
y=2\times 5-9\times 3\times 5+9\times 13\times 5+69
Consider the second equation. Insert the known values of variables into the equation.
y=10-9\times 3\times 5+9\times 13\times 5+69
Multiply 2 and 5 to get 10.
y=10-27\times 5+9\times 13\times 5+69
Multiply 9 and 3 to get 27.
y=10-135+9\times 13\times 5+69
Multiply 27 and 5 to get 135.
y=-125+9\times 13\times 5+69
Subtract 135 from 10 to get -125.
y=-125+117\times 5+69
Multiply 9 and 13 to get 117.
y=-125+585+69
Multiply 117 and 5 to get 585.
y=460+69
Add -125 and 585 to get 460.
y=529
Add 460 and 69 to get 529.
z=529
Consider the third equation. Insert the known values of variables into the equation.
x=5 y=529 z=529
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}