Solve for p, q, r, s, t, u
u=6
Share
Copied to clipboard
3p-2\left(p-3\right)=12
Consider the first equation. Multiply both sides of the equation by 12, the least common multiple of 4,6.
3p-2p+6=12
Use the distributive property to multiply -2 by p-3.
p+6=12
Combine 3p and -2p to get p.
p=12-6
Subtract 6 from both sides.
p=6
Subtract 6 from 12 to get 6.
q=6
Consider the second equation. Insert the known values of variables into the equation.
r=6
Consider the third equation. Insert the known values of variables into the equation.
s=6
Consider the fourth equation. Insert the known values of variables into the equation.
t=6
Consider the fifth equation. Insert the known values of variables into the equation.
u=6
Consider the equation (6). Insert the known values of variables into the equation.
p=6 q=6 r=6 s=6 t=6 u=6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}