Solve for a, b, c
c=-9
Share
Copied to clipboard
-2\left(a-9\right)=\left(a-3\right)\left(-3\right)
Consider the first equation. Variable a cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 2\left(a-3\right), the least common multiple of 3-a,2.
-2a+18=\left(a-3\right)\left(-3\right)
Use the distributive property to multiply -2 by a-9.
-2a+18=-3a+9
Use the distributive property to multiply a-3 by -3.
-2a+18+3a=9
Add 3a to both sides.
a+18=9
Combine -2a and 3a to get a.
a=9-18
Subtract 18 from both sides.
a=-9
Subtract 18 from 9 to get -9.
b=-9
Consider the second equation. Insert the known values of variables into the equation.
c=-9
Consider the third equation. Insert the known values of variables into the equation.
a=-9 b=-9 c=-9
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}