Skip to main content
Solve for x, y, z, a
Tick mark Image

Similar Problems from Web Search

Share

x\left(2x+3\right)\left(7x+2\right)+\left(4x^{2}-9\right)\left(5x+4\right)=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Consider the first equation. Variable x cannot be equal to any of the values -\frac{3}{2},0,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-3\right)\left(2x+3\right), the least common multiple of 2x-3,x,4x^{2}-9,2x^{2}-3x.
\left(2x^{2}+3x\right)\left(7x+2\right)+\left(4x^{2}-9\right)\left(5x+4\right)=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Use the distributive property to multiply x by 2x+3.
14x^{3}+25x^{2}+6x+\left(4x^{2}-9\right)\left(5x+4\right)=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Use the distributive property to multiply 2x^{2}+3x by 7x+2 and combine like terms.
14x^{3}+25x^{2}+6x+20x^{3}+16x^{2}-45x-36=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Use the distributive property to multiply 4x^{2}-9 by 5x+4.
34x^{3}+25x^{2}+6x+16x^{2}-45x-36=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Combine 14x^{3} and 20x^{3} to get 34x^{3}.
34x^{3}+41x^{2}+6x-45x-36=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Combine 25x^{2} and 16x^{2} to get 41x^{2}.
34x^{3}+41x^{2}-39x-36=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Combine 6x and -45x to get -39x.
34x^{3}+41x^{2}-39x-36=34x^{3}+43x^{2}-2x+\left(2x+3\right)\left(10-x\right)
Use the distributive property to multiply x by 34x^{2}+43x-2.
34x^{3}+41x^{2}-39x-36=34x^{3}+43x^{2}-2x+17x-2x^{2}+30
Use the distributive property to multiply 2x+3 by 10-x and combine like terms.
34x^{3}+41x^{2}-39x-36=34x^{3}+43x^{2}+15x-2x^{2}+30
Combine -2x and 17x to get 15x.
34x^{3}+41x^{2}-39x-36=34x^{3}+41x^{2}+15x+30
Combine 43x^{2} and -2x^{2} to get 41x^{2}.
34x^{3}+41x^{2}-39x-36-34x^{3}=41x^{2}+15x+30
Subtract 34x^{3} from both sides.
41x^{2}-39x-36=41x^{2}+15x+30
Combine 34x^{3} and -34x^{3} to get 0.
41x^{2}-39x-36-41x^{2}=15x+30
Subtract 41x^{2} from both sides.
-39x-36=15x+30
Combine 41x^{2} and -41x^{2} to get 0.
-39x-36-15x=30
Subtract 15x from both sides.
-54x-36=30
Combine -39x and -15x to get -54x.
-54x=30+36
Add 36 to both sides.
-54x=66
Add 30 and 36 to get 66.
x=\frac{66}{-54}
Divide both sides by -54.
x=-\frac{11}{9}
Reduce the fraction \frac{66}{-54} to lowest terms by extracting and canceling out 6.
x=-\frac{11}{9} y=333 z=333 a=333
The system is now solved.