Solve for m, n, o, p, q, r, s, t, u
r=\frac{1}{35}\approx 0.028571429
t=0
s=0
u=0
Share
Copied to clipboard
\frac{5}{9}\times 63=m
Consider the first equation. Multiply both sides by 63.
35=m
Multiply \frac{5}{9} and 63 to get 35.
m=35
Swap sides so that all variable terms are on the left hand side.
n=\frac{0+1}{35}
Consider the second equation. Multiply 0 and 35 to get 0.
n=\frac{1}{35}
Add 0 and 1 to get 1.
o=0
Consider the third equation. Multiply 0 and 1 to get 0.
p=0
Consider the fourth equation. Multiply 0 and 7 to get 0.
q=0
Consider the fifth equation. Multiply 0 and 35 to get 0.
r=\frac{1}{35}
Consider the equation (6). Insert the known values of variables into the equation.
s=0
Consider the equation (7). Insert the known values of variables into the equation.
t=0
Consider the equation (8). Insert the known values of variables into the equation.
u=0
Consider the equation (9). Insert the known values of variables into the equation.
m=35 n=\frac{1}{35} o=0 p=0 q=0 r=\frac{1}{35} s=0 t=0 u=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}