Solve for x, y, z
z=91303968
Share
Copied to clipboard
\frac{5}{4}x+\frac{883}{256}=\frac{3}{32}x+\frac{1}{8}
Consider the first equation. Use the distributive property to multiply -\frac{1}{4} by -\frac{3}{8}x-\frac{1}{2}.
\frac{5}{4}x+\frac{883}{256}-\frac{3}{32}x=\frac{1}{8}
Subtract \frac{3}{32}x from both sides.
\frac{37}{32}x+\frac{883}{256}=\frac{1}{8}
Combine \frac{5}{4}x and -\frac{3}{32}x to get \frac{37}{32}x.
\frac{37}{32}x=\frac{1}{8}-\frac{883}{256}
Subtract \frac{883}{256} from both sides.
\frac{37}{32}x=-\frac{851}{256}
Subtract \frac{883}{256} from \frac{1}{8} to get -\frac{851}{256}.
x=-\frac{851}{256}\times \frac{32}{37}
Multiply both sides by \frac{32}{37}, the reciprocal of \frac{37}{32}.
x=-\frac{23}{8}
Multiply -\frac{851}{256} and \frac{32}{37} to get -\frac{23}{8}.
y=50057\times 12\times 8\times 19
Consider the second equation. Multiply 7151 and 7 to get 50057.
y=600684\times 8\times 19
Multiply 50057 and 12 to get 600684.
y=4805472\times 19
Multiply 600684 and 8 to get 4805472.
y=91303968
Multiply 4805472 and 19 to get 91303968.
z=91303968
Consider the third equation. Insert the known values of variables into the equation.
x=-\frac{23}{8} y=91303968 z=91303968
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}