Skip to main content
Solve for x, y, z
Tick mark Image

Share

\frac{5}{4}x+\frac{883}{256}=\frac{3}{32}x+\frac{1}{8}
Consider the first equation. Use the distributive property to multiply -\frac{1}{4} by -\frac{3}{8}x-\frac{1}{2}.
\frac{5}{4}x+\frac{883}{256}-\frac{3}{32}x=\frac{1}{8}
Subtract \frac{3}{32}x from both sides.
\frac{37}{32}x+\frac{883}{256}=\frac{1}{8}
Combine \frac{5}{4}x and -\frac{3}{32}x to get \frac{37}{32}x.
\frac{37}{32}x=\frac{1}{8}-\frac{883}{256}
Subtract \frac{883}{256} from both sides.
\frac{37}{32}x=-\frac{851}{256}
Subtract \frac{883}{256} from \frac{1}{8} to get -\frac{851}{256}.
x=-\frac{851}{256}\times \frac{32}{37}
Multiply both sides by \frac{32}{37}, the reciprocal of \frac{37}{32}.
x=-\frac{23}{8}
Multiply -\frac{851}{256} and \frac{32}{37} to get -\frac{23}{8}.
y=50057\times 12\times 8\times 19
Consider the second equation. Multiply 7151 and 7 to get 50057.
y=600684\times 8\times 19
Multiply 50057 and 12 to get 600684.
y=4805472\times 19
Multiply 600684 and 8 to get 4805472.
y=91303968
Multiply 4805472 and 19 to get 91303968.
z=91303968
Consider the third equation. Insert the known values of variables into the equation.
x=-\frac{23}{8} y=91303968 z=91303968
The system is now solved.