Solve for x, y, z
z = -\frac{24}{7} = -3\frac{3}{7} \approx -3.428571429
Share
Copied to clipboard
3\left(5-2x\right)=x-3
Consider the first equation. Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-3\right), the least common multiple of x-3,3.
15-6x=x-3
Use the distributive property to multiply 3 by 5-2x.
15-6x-x=-3
Subtract x from both sides.
15-7x=-3
Combine -6x and -x to get -7x.
-7x=-3-15
Subtract 15 from both sides.
-7x=-18
Subtract 15 from -3 to get -18.
x=\frac{-18}{-7}
Divide both sides by -7.
x=\frac{18}{7}
Fraction \frac{-18}{-7} can be simplified to \frac{18}{7} by removing the negative sign from both the numerator and the denominator.
y=-6\times \frac{18}{7}+12
Consider the second equation. Insert the known values of variables into the equation.
y=-\frac{108}{7}+12
Multiply -6 and \frac{18}{7} to get -\frac{108}{7}.
y=-\frac{24}{7}
Add -\frac{108}{7} and 12 to get -\frac{24}{7}.
z=-\frac{24}{7}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{18}{7} y=-\frac{24}{7} z=-\frac{24}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}