Solve for x, y, z, a, b, c
c=8
Share
Copied to clipboard
\frac{2}{3}x+\frac{1}{5}=\frac{1}{5}
Consider the first equation. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x=\frac{1}{5}-\frac{1}{5}
Subtract \frac{1}{5} from both sides.
\frac{2}{3}x=0
Subtract \frac{1}{5} from \frac{1}{5} to get 0.
x=0
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}. Anything times zero gives zero.
y=0+8
Consider the second equation. The opposite of -8 is 8.
y=8
Add 0 and 8 to get 8.
z=8
Consider the third equation. Insert the known values of variables into the equation.
a=8
Consider the fourth equation. Insert the known values of variables into the equation.
b=8
Consider the fifth equation. Insert the known values of variables into the equation.
c=8
Consider the equation (6). Insert the known values of variables into the equation.
x=0 y=8 z=8 a=8 b=8 c=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}