Solve for x, y, z
z = \frac{1500}{17} = 88\frac{4}{17} \approx 88.235294118
Share
Copied to clipboard
\left(x+500\right)\times 150=1000x
Consider the first equation. Variable x cannot be equal to -500 since division by zero is not defined. Multiply both sides of the equation by 1000\left(x+500\right), the least common multiple of 1000,x+500.
150x+75000=1000x
Use the distributive property to multiply x+500 by 150.
150x+75000-1000x=0
Subtract 1000x from both sides.
-850x+75000=0
Combine 150x and -1000x to get -850x.
-850x=-75000
Subtract 75000 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-75000}{-850}
Divide both sides by -850.
x=\frac{1500}{17}
Reduce the fraction \frac{-75000}{-850} to lowest terms by extracting and canceling out -50.
y=\frac{1500}{17}
Consider the second equation. Insert the known values of variables into the equation.
z=\frac{1500}{17}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{1500}{17} y=\frac{1500}{17} z=\frac{1500}{17}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}