Skip to main content
Solve for x, y, z, a, b
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{40320}+\frac{1}{9!}=\frac{x}{10!}
Consider the first equation. The factorial of 8 is 40320.
\frac{1}{40320}+\frac{1}{362880}=\frac{x}{10!}
The factorial of 9 is 362880.
\frac{1}{36288}=\frac{x}{10!}
Add \frac{1}{40320} and \frac{1}{362880} to get \frac{1}{36288}.
\frac{1}{36288}=\frac{x}{3628800}
The factorial of 10 is 3628800.
\frac{x}{3628800}=\frac{1}{36288}
Swap sides so that all variable terms are on the left hand side.
x=\frac{1}{36288}\times 3628800
Multiply both sides by 3628800.
x=100
Multiply \frac{1}{36288} and 3628800 to get 100.
x=100 y=8 z=8 a=8 b=8
The system is now solved.