Solve for x, y, z
z=151200
Share
Copied to clipboard
\frac{1}{24}+\frac{1}{5!}=\frac{x}{6!}
Consider the first equation. The factorial of 4 is 24.
\frac{1}{24}+\frac{1}{120}=\frac{x}{6!}
The factorial of 5 is 120.
\frac{1}{20}=\frac{x}{6!}
Add \frac{1}{24} and \frac{1}{120} to get \frac{1}{20}.
\frac{1}{20}=\frac{x}{720}
The factorial of 6 is 720.
\frac{x}{720}=\frac{1}{20}
Swap sides so that all variable terms are on the left hand side.
x=\frac{1}{20}\times 720
Multiply both sides by 720.
x=36
Multiply \frac{1}{20} and 720 to get 36.
y=30\times 7\times 8\times 9\times 10
Consider the second equation. Multiply 5 and 6 to get 30.
y=210\times 8\times 9\times 10
Multiply 30 and 7 to get 210.
y=1680\times 9\times 10
Multiply 210 and 8 to get 1680.
y=15120\times 10
Multiply 1680 and 9 to get 15120.
y=151200
Multiply 15120 and 10 to get 151200.
z=151200
Consider the third equation. Insert the known values of variables into the equation.
x=36 y=151200 z=151200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}