Solve for x, y, z, a, b
b = \frac{32}{3} = 10\frac{2}{3} \approx 10.666666667
Share
Copied to clipboard
3-x=\frac{1}{3}
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
-x=\frac{1}{3}-3
Subtract 3 from both sides.
-x=-\frac{8}{3}
Subtract 3 from \frac{1}{3} to get -\frac{8}{3}.
x=\frac{-\frac{8}{3}}{-1}
Divide both sides by -1.
x=\frac{-8}{3\left(-1\right)}
Express \frac{-\frac{8}{3}}{-1} as a single fraction.
x=\frac{-8}{-3}
Multiply 3 and -1 to get -3.
x=\frac{8}{3}
Fraction \frac{-8}{-3} can be simplified to \frac{8}{3} by removing the negative sign from both the numerator and the denominator.
y=4\times \frac{8}{3}
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{32}{3}
Multiply 4 and \frac{8}{3} to get \frac{32}{3}.
z=\frac{32}{3}
Consider the third equation. Insert the known values of variables into the equation.
a=\frac{32}{3}
Consider the fourth equation. Insert the known values of variables into the equation.
b=\frac{32}{3}
Consider the fifth equation. Insert the known values of variables into the equation.
x=\frac{8}{3} y=\frac{32}{3} z=\frac{32}{3} a=\frac{32}{3} b=\frac{32}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}