Solve for R, a, b
b = \frac{825650}{198181} = 4\frac{32926}{198181} \approx 4.166141053
Share
Copied to clipboard
825650R\times \frac{1}{25}+825650R\times \frac{1}{5}+825650R\times \frac{1}{33026}=825650
Consider the first equation. Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 825650R, the least common multiple of 25,5,33026,R.
33026R+825650R\times \frac{1}{5}+825650R\times \frac{1}{33026}=825650
Multiply 825650 and \frac{1}{25} to get 33026.
33026R+165130R+825650R\times \frac{1}{33026}=825650
Multiply 825650 and \frac{1}{5} to get 165130.
198156R+825650R\times \frac{1}{33026}=825650
Combine 33026R and 165130R to get 198156R.
198156R+25R=825650
Multiply 825650 and \frac{1}{33026} to get 25.
198181R=825650
Combine 198156R and 25R to get 198181R.
R=\frac{825650}{198181}
Divide both sides by 198181.
a=\frac{825650}{198181}
Consider the second equation. Insert the known values of variables into the equation.
b=\frac{825650}{198181}
Consider the third equation. Insert the known values of variables into the equation.
R=\frac{825650}{198181} a=\frac{825650}{198181} b=\frac{825650}{198181}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}