Solve for x, y, z, a, b, c
x\in \cup n_{1},\frac{\pi n_{1}}{2}+\frac{\pi }{4}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{2}\in \mathrm{Z}\text{ : }n_{1}=2n_{2}\right)\right)\right)\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }b=0\text{, }a=\left(-1\right)^{n_{1}}-1\text{ and }z=0\right)\right)\right)\right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\left(-1\right)^{n_{1}}-1\right)\right)\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }b=\left(-1\right)^{n_{1}}-1\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{2}\in \mathrm{Z}\text{ : }n_{1}=2n_{2}\right)\right)\right)\right)\right)\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{2}\in \mathrm{Z}\text{ : }n_{1}=2n_{2}\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{2}\in \mathrm{Z}\text{ : }n_{1}=2n_{2}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\text{, }n_{1}\in \mathrm{Z}\text{, }y=0\text{, }c=0\text{ and }a=0\text{ and }z=0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}