\left. \begin{array} { c c c } \hline 1,519 & { 1,009 } & { 607 } \\ { \frac { 921 } { 2,440 } } & { \frac { 644 } { 1,653 } } & { 464 } \\ \hline & { 1,071 } \end{array} \right.
Calculate Determinant
\frac{1865304636363}{7625000} = 244630\frac{886363}{7625000} = 244630.11624432786
Evaluate
\left(\begin{matrix}1,519&1,009&607\\\frac{23025}{61}&\frac{644000}{1653}&464\\0&1,071&0\end{matrix}\right)
Share
Copied to clipboard
det(\left(\begin{matrix}1,519&1,009&607\\\frac{23025}{61}&\frac{644000}{1653}&464\\0&1,071&0\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1,519&1,009&607&1,519&1,009\\\frac{23025}{61}&\frac{644000}{1653}&464&\frac{23025}{61}&\frac{644000}{1653}\\0&1,071&0&0&1,071\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
607\times \frac{23025}{61}\times 1,071=\frac{598739337}{2440}
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
1,071\times 464\times 1,519=754,857936
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
\frac{598739337}{2440}-754,857936
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\frac{1865304636363}{7625000}
Subtract 754,857936 from \frac{598739337}{2440} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
det(\left(\begin{matrix}1,519&1,009&607\\\frac{23025}{61}&\frac{644000}{1653}&464\\0&1,071&0\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
1,519det(\left(\begin{matrix}\frac{644000}{1653}&464\\1,071&0\end{matrix}\right))-1,009det(\left(\begin{matrix}\frac{23025}{61}&464\\0&0\end{matrix}\right))+607det(\left(\begin{matrix}\frac{23025}{61}&\frac{644000}{1653}\\0&1,071\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
1,519\left(-1,071\times 464\right)+607\times \frac{23025}{61}\times 1,071
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
1,519\left(-496,944\right)+607\times \frac{986391}{2440}
Simplify.
\frac{1865304636363}{7625000}
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}