\left. \begin{array} { c } { y = x \cdot d x } \\ { x = \int _ { 0 } ^ { 2 } a d a } \end{array} \right.
Solve for x, y
x=2
y=4d
Share
Copied to clipboard
y=x^{2}d
Consider the first equation. Multiply x and x to get x^{2}.
y-x^{2}d=0
Subtract x^{2}d from both sides.
-dx^{2}+y=0
Reorder the terms.
x=2,\left(-d\right)x^{2}+y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x=2
Pick one of the two equations which is more simple to solve for x by isolating x on the left hand side of the equal sign.
\left(-d\right)\times 2^{2}+y=0
Substitute 2 for x in the other equation, \left(-d\right)x^{2}+y=0.
\left(-d\right)\times 4+y=0
Square 2.
-4d+y=0
Multiply -d times 4.
y=4d
Add 4d to both sides of the equation.
x=2,y=4d
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}