Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-59x=193
Consider the first equation. Subtract 59x from both sides.
x-2y=0
Consider the second equation. Subtract 2y from both sides.
y-59x=193,-2y+x=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-59x=193
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=59x+193
Add 59x to both sides of the equation.
-2\left(59x+193\right)+x=0
Substitute 59x+193 for y in the other equation, -2y+x=0.
-118x-386+x=0
Multiply -2 times 59x+193.
-117x-386=0
Add -118x to x.
-117x=386
Add 386 to both sides of the equation.
x=-\frac{386}{117}
Divide both sides by -117.
y=59\left(-\frac{386}{117}\right)+193
Substitute -\frac{386}{117} for x in y=59x+193. Because the resulting equation contains only one variable, you can solve for y directly.
y=-\frac{22774}{117}+193
Multiply 59 times -\frac{386}{117}.
y=-\frac{193}{117}
Add 193 to -\frac{22774}{117}.
y=-\frac{193}{117},x=-\frac{386}{117}
The system is now solved.
y-59x=193
Consider the first equation. Subtract 59x from both sides.
x-2y=0
Consider the second equation. Subtract 2y from both sides.
y-59x=193,-2y+x=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-59\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}193\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-59\\-2&1\end{matrix}\right))\left(\begin{matrix}1&-59\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-59\\-2&1\end{matrix}\right))\left(\begin{matrix}193\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-59\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-59\\-2&1\end{matrix}\right))\left(\begin{matrix}193\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-59\\-2&1\end{matrix}\right))\left(\begin{matrix}193\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-59\left(-2\right)\right)}&-\frac{-59}{1-\left(-59\left(-2\right)\right)}\\-\frac{-2}{1-\left(-59\left(-2\right)\right)}&\frac{1}{1-\left(-59\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}193\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{117}&-\frac{59}{117}\\-\frac{2}{117}&-\frac{1}{117}\end{matrix}\right)\left(\begin{matrix}193\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{117}\times 193\\-\frac{2}{117}\times 193\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{193}{117}\\-\frac{386}{117}\end{matrix}\right)
Do the arithmetic.
y=-\frac{193}{117},x=-\frac{386}{117}
Extract the matrix elements y and x.
y-59x=193
Consider the first equation. Subtract 59x from both sides.
x-2y=0
Consider the second equation. Subtract 2y from both sides.
y-59x=193,-2y+x=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-2y-2\left(-59\right)x=-2\times 193,-2y+x=0
To make y and -2y equal, multiply all terms on each side of the first equation by -2 and all terms on each side of the second by 1.
-2y+118x=-386,-2y+x=0
Simplify.
-2y+2y+118x-x=-386
Subtract -2y+x=0 from -2y+118x=-386 by subtracting like terms on each side of the equal sign.
118x-x=-386
Add -2y to 2y. Terms -2y and 2y cancel out, leaving an equation with only one variable that can be solved.
117x=-386
Add 118x to -x.
x=-\frac{386}{117}
Divide both sides by 117.
-2y-\frac{386}{117}=0
Substitute -\frac{386}{117} for x in -2y+x=0. Because the resulting equation contains only one variable, you can solve for y directly.
-2y=\frac{386}{117}
Add \frac{386}{117} to both sides of the equation.
y=-\frac{193}{117}
Divide both sides by -2.
y=-\frac{193}{117},x=-\frac{386}{117}
The system is now solved.