Solve for y, x
x=\frac{4}{5}=0.8\text{, }y=\frac{22}{5}=4.4
x=-2\text{, }y=-4
Graph
Share
Copied to clipboard
y-3x=2
Consider the first equation. Subtract 3x from both sides.
y-3x=2,x^{2}+y^{2}=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-3x=2
Solve y-3x=2 for y by isolating y on the left hand side of the equal sign.
y=3x+2
Subtract -3x from both sides of the equation.
x^{2}+\left(3x+2\right)^{2}=20
Substitute 3x+2 for y in the other equation, x^{2}+y^{2}=20.
x^{2}+9x^{2}+12x+4=20
Square 3x+2.
10x^{2}+12x+4=20
Add x^{2} to 9x^{2}.
10x^{2}+12x-16=0
Subtract 20 from both sides of the equation.
x=\frac{-12±\sqrt{12^{2}-4\times 10\left(-16\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 3^{2} for a, 1\times 2\times 2\times 3 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 10\left(-16\right)}}{2\times 10}
Square 1\times 2\times 2\times 3.
x=\frac{-12±\sqrt{144-40\left(-16\right)}}{2\times 10}
Multiply -4 times 1+1\times 3^{2}.
x=\frac{-12±\sqrt{144+640}}{2\times 10}
Multiply -40 times -16.
x=\frac{-12±\sqrt{784}}{2\times 10}
Add 144 to 640.
x=\frac{-12±28}{2\times 10}
Take the square root of 784.
x=\frac{-12±28}{20}
Multiply 2 times 1+1\times 3^{2}.
x=\frac{16}{20}
Now solve the equation x=\frac{-12±28}{20} when ± is plus. Add -12 to 28.
x=\frac{4}{5}
Reduce the fraction \frac{16}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{40}{20}
Now solve the equation x=\frac{-12±28}{20} when ± is minus. Subtract 28 from -12.
x=-2
Divide -40 by 20.
y=3\times \frac{4}{5}+2
There are two solutions for x: \frac{4}{5} and -2. Substitute \frac{4}{5} for x in the equation y=3x+2 to find the corresponding solution for y that satisfies both equations.
y=\frac{12}{5}+2
Multiply 3 times \frac{4}{5}.
y=\frac{22}{5}
Add \frac{4}{5}\times 3 to 2.
y=3\left(-2\right)+2
Now substitute -2 for x in the equation y=3x+2 and solve to find the corresponding solution for y that satisfies both equations.
y=-6+2
Multiply 3 times -2.
y=-4
Add -2\times 3 to 2.
y=\frac{22}{5},x=\frac{4}{5}\text{ or }y=-4,x=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}