Solve for y, x_1, x_2
y = \frac{2511}{256} = 9\frac{207}{256} = 9.80859375
x_{1} = \frac{9}{4} = 2\frac{1}{4} = 2.25
x_{2}=-\frac{9}{32}=-0.28125
Share
Copied to clipboard
y=2\times \left(\frac{9}{4}\right)^{2}+4\left(-\frac{9}{32}\right)^{2}+\frac{9}{4}\left(-\frac{9}{32}\right)
Consider the first equation. Insert the known values of variables into the equation.
y=2\times \frac{81}{16}+4\left(-\frac{9}{32}\right)^{2}+\frac{9}{4}\left(-\frac{9}{32}\right)
Calculate \frac{9}{4} to the power of 2 and get \frac{81}{16}.
y=\frac{81}{8}+4\left(-\frac{9}{32}\right)^{2}+\frac{9}{4}\left(-\frac{9}{32}\right)
Multiply 2 and \frac{81}{16} to get \frac{81}{8}.
y=\frac{81}{8}+4\times \frac{81}{1024}+\frac{9}{4}\left(-\frac{9}{32}\right)
Calculate -\frac{9}{32} to the power of 2 and get \frac{81}{1024}.
y=\frac{81}{8}+\frac{81}{256}+\frac{9}{4}\left(-\frac{9}{32}\right)
Multiply 4 and \frac{81}{1024} to get \frac{81}{256}.
y=\frac{2673}{256}+\frac{9}{4}\left(-\frac{9}{32}\right)
Add \frac{81}{8} and \frac{81}{256} to get \frac{2673}{256}.
y=\frac{2673}{256}-\frac{81}{128}
Multiply \frac{9}{4} and -\frac{9}{32} to get -\frac{81}{128}.
y=\frac{2511}{256}
Subtract \frac{81}{128} from \frac{2673}{256} to get \frac{2511}{256}.
y=\frac{2511}{256} x_{1}=\frac{9}{4} x_{2}=-\frac{9}{32}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}