Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Solve for x_1, x_2, x_3
x_{1}=9x_{4}
x_{2}=-8x_{4}
x_{3}=-4x_{4}
View solution steps
Short Steps Using Substitution
\left. \begin{array} { c } { x _ { 1 } + 2 x _ { 2 } - x _ { 3 } + 3 x _ { 4 } = 0 } \\ { 2 x _ { 1 } + 3 x _ { 2 } - x _ { 3 } + 2 x _ { 4 } = 0 } \\ { x _ { 1 } \quad + 3 x _ { 3 } + 3 x _ { 4 } = 0 } \end{array} \right.
Solve x_{1}+2x_{2}-x_{3}+3x_{4}=0 for x_{1}.
x_{1}=-2x_{2}+x_{3}-3x_{4}
Substitute -2x_{2}+x_{3}-3x_{4} for x_{1} in the second and third equation.
2\left(-2x_{2}+x_{3}-3x_{4}\right)+3x_{2}-x_{3}+2x_{4}=0 -2x_{2}+x_{3}-3x_{4}+3x_{3}+3x_{4}=0
Solve these equations for x_{2} and x_{3} respectively.
x_{2}=x_{3}-4x_{4} x_{3}=\frac{1}{2}x_{2}
Substitute x_{3}-4x_{4} for x_{2} in the equation x_{3}=\frac{1}{2}x_{2}.
x_{3}=\frac{1}{2}\left(x_{3}-4x_{4}\right)
Solve x_{3}=\frac{1}{2}\left(x_{3}-4x_{4}\right) for x_{3}.
x_{3}=-4x_{4}
Substitute -4x_{4} for x_{3} in the equation x_{2}=x_{3}-4x_{4}.
x_{2}=-4x_{4}-4x_{4}
Calculate x_{2} from x_{2}=-4x_{4}-4x_{4}.
x_{2}=-8x_{4}
Substitute -8x_{4} for x_{2} and -4x_{4} for x_{3} in the equation x_{1}=-2x_{2}+x_{3}-3x_{4}.
x_{1}=-2\left(-8\right)x_{4}-4x_{4}-3x_{4}
Calculate x_{1} from x_{1}=-2\left(-8\right)x_{4}-4x_{4}-3x_{4}.
x_{1}=9x_{4}
The system is now solved.
x_{1}=9x_{4} x_{2}=-8x_{4} x_{3}=-4x_{4}
Quiz
Algebra
5 problems similar to:
\left. \begin{array} { c } { x _ { 1 } + 2 x _ { 2 } - x _ { 3 } + 3 x _ { 4 } = 0 } \\ { 2 x _ { 1 } + 3 x _ { 2 } - x _ { 3 } + 2 x _ { 4 } = 0 } \\ { x _ { 1 } \quad + 3 x _ { 3 } + 3 x _ { 4 } = 0 } \end{array} \right.
Similar Problems from Web Search
Without using pen and paper, determine which of the following homogeneous systems have nontrivial solutions
https://math.stackexchange.com/q/2318142
Hint :- If you are given m homogeneous equations in n unknowns and m < n, then you always get infinitely many solutions, since at least one variable becomes free. For a homogeneous system, if ...
Lemke-Howson pivoting in degenerate bimatrix games
https://math.stackexchange.com/questions/1151753/lemke-howson-pivoting-in-degenerate-bimatrix-games
You should use lexicographic degeneracy resolution, and in particular the lexicographic minimum ratio test . Actually the notes you cite mention this correctly: By using infinitesimal perturbations, ...
Show that these linear maps are linearly independent
https://math.stackexchange.com/q/635028
You can show that the matrices of f, g and h are linearly independent as elements of the vector space M_{2\times3}(\mathbb{R}) of 2\times 3 matrices. Namely, suppose a\begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 0 \end{bmatrix} + b\begin{bmatrix} 2 & 0 & 1\\ 1 & 1 & 0 \end{bmatrix} + c\begin{bmatrix} 0 & 2 & 0\\ 1 & 0 & 0 \end{bmatrix} =O ...
Learning Linear Algebra for AI, Cannot solve system in R3.
https://math.stackexchange.com/questions/3006035/learning-linear-algebra-for-ai-cannot-solve-system-in-r3
Guide: Not every system has a unique solution. For your system to have a solution, we need a-2b+c=0 . If we have a-2b+c=0 , now we can let x_1=t , from -3x_1+5x_2=c , we can solve for x_2 ...
express \sum_{i,j\in\{0,1,2\}\atop i\neq j} x_ix_j^2 by means of the elementary symmetric functions.
https://math.stackexchange.com/questions/1885176/express-sum-i-j-in-0-1-2-atop-i-neq-j-x-ix-j2-by-means-of-the-elementar
a b^2+a c^2+b a^2+b c^2+ c a^2+ c b^2=-3 a b c + (a+b+c)(a b + b c + c a)
How to determine the eigenvectors of this matrix?
https://math.stackexchange.com/questions/701673/how-to-determine-the-eigenvectors-of-this-matrix
Every linear combination of EV_{1}=\pmatrix{1\\0\\0} and EV_3=\pmatrix{0\\1\\0} is a eigenvector with eigenvalue 1. EV_{1,3} = span\{\left( \begin{array}{ccc} 1 \\ 0 \\ 0 \end{array} \right), \left( \begin{array}{ccc} 0 \\ 1 \\ 0 \end{array} \right), \left( \begin{array}{ccc} 1 \\ 1 \\ 0 \end{array} \right)\} ...
More Items
Share
Copy
Copied to clipboard
x_{1}=-2x_{2}+x_{3}-3x_{4}
Solve x_{1}+2x_{2}-x_{3}+3x_{4}=0 for x_{1}.
2\left(-2x_{2}+x_{3}-3x_{4}\right)+3x_{2}-x_{3}+2x_{4}=0 -2x_{2}+x_{3}-3x_{4}+3x_{3}+3x_{4}=0
Substitute -2x_{2}+x_{3}-3x_{4} for x_{1} in the second and third equation.
x_{2}=x_{3}-4x_{4} x_{3}=\frac{1}{2}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=\frac{1}{2}\left(x_{3}-4x_{4}\right)
Substitute x_{3}-4x_{4} for x_{2} in the equation x_{3}=\frac{1}{2}x_{2}.
x_{3}=-4x_{4}
Solve x_{3}=\frac{1}{2}\left(x_{3}-4x_{4}\right) for x_{3}.
x_{2}=-4x_{4}-4x_{4}
Substitute -4x_{4} for x_{3} in the equation x_{2}=x_{3}-4x_{4}.
x_{2}=-8x_{4}
Calculate x_{2} from x_{2}=-4x_{4}-4x_{4}.
x_{1}=-2\left(-8\right)x_{4}-4x_{4}-3x_{4}
Substitute -8x_{4} for x_{2} and -4x_{4} for x_{3} in the equation x_{1}=-2x_{2}+x_{3}-3x_{4}.
x_{1}=9x_{4}
Calculate x_{1} from x_{1}=-2\left(-8\right)x_{4}-4x_{4}-3x_{4}.
x_{1}=9x_{4} x_{2}=-8x_{4} x_{3}=-4x_{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top