Skip to main content
Solve for x_1, x_3, x_2
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=12-6x_{3}
Solve x_{1}+6x_{3}=12 for x_{1}.
2\left(12-6x_{3}\right)+3x_{2}+9x_{3}=0
Substitute 12-6x_{3} for x_{1} in the equation 2x_{1}+3x_{2}+9x_{3}=0.
x_{3}=8+x_{2} x_{2}=-\frac{3}{5}-\frac{3}{5}x_{3}
Solve the second equation for x_{3} and the third equation for x_{2}.
x_{2}=-\frac{3}{5}-\frac{3}{5}\left(8+x_{2}\right)
Substitute 8+x_{2} for x_{3} in the equation x_{2}=-\frac{3}{5}-\frac{3}{5}x_{3}.
x_{2}=-\frac{27}{8}
Solve x_{2}=-\frac{3}{5}-\frac{3}{5}\left(8+x_{2}\right) for x_{2}.
x_{3}=8-\frac{27}{8}
Substitute -\frac{27}{8} for x_{2} in the equation x_{3}=8+x_{2}.
x_{3}=\frac{37}{8}
Calculate x_{3} from x_{3}=8-\frac{27}{8}.
x_{1}=12-6\times \frac{37}{8}
Substitute \frac{37}{8} for x_{3} in the equation x_{1}=12-6x_{3}.
x_{1}=-\frac{63}{4}
Calculate x_{1} from x_{1}=12-6\times \frac{37}{8}.
x_{1}=-\frac{63}{4} x_{3}=\frac{37}{8} x_{2}=-\frac{27}{8}
The system is now solved.