Solve for x_1, x_3, x_2
x_{1} = -\frac{63}{4} = -15\frac{3}{4} = -15.75
x_{3} = \frac{37}{8} = 4\frac{5}{8} = 4.625
x_{2} = -\frac{27}{8} = -3\frac{3}{8} = -3.375
Share
Copied to clipboard
x_{1}=12-6x_{3}
Solve x_{1}+6x_{3}=12 for x_{1}.
2\left(12-6x_{3}\right)+3x_{2}+9x_{3}=0
Substitute 12-6x_{3} for x_{1} in the equation 2x_{1}+3x_{2}+9x_{3}=0.
x_{3}=8+x_{2} x_{2}=-\frac{3}{5}-\frac{3}{5}x_{3}
Solve the second equation for x_{3} and the third equation for x_{2}.
x_{2}=-\frac{3}{5}-\frac{3}{5}\left(8+x_{2}\right)
Substitute 8+x_{2} for x_{3} in the equation x_{2}=-\frac{3}{5}-\frac{3}{5}x_{3}.
x_{2}=-\frac{27}{8}
Solve x_{2}=-\frac{3}{5}-\frac{3}{5}\left(8+x_{2}\right) for x_{2}.
x_{3}=8-\frac{27}{8}
Substitute -\frac{27}{8} for x_{2} in the equation x_{3}=8+x_{2}.
x_{3}=\frac{37}{8}
Calculate x_{3} from x_{3}=8-\frac{27}{8}.
x_{1}=12-6\times \frac{37}{8}
Substitute \frac{37}{8} for x_{3} in the equation x_{1}=12-6x_{3}.
x_{1}=-\frac{63}{4}
Calculate x_{1} from x_{1}=12-6\times \frac{37}{8}.
x_{1}=-\frac{63}{4} x_{3}=\frac{37}{8} x_{2}=-\frac{27}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}