Solve for x, y
x=1040
y=440
Graph
Share
Copied to clipboard
x-y=600,1.3x-0.8y=1000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=600
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=y+600
Add y to both sides of the equation.
1.3\left(y+600\right)-0.8y=1000
Substitute y+600 for x in the other equation, 1.3x-0.8y=1000.
1.3y+780-0.8y=1000
Multiply 1.3 times y+600.
0.5y+780=1000
Add \frac{13y}{10} to -\frac{4y}{5}.
0.5y=220
Subtract 780 from both sides of the equation.
y=440
Multiply both sides by 2.
x=440+600
Substitute 440 for y in x=y+600. Because the resulting equation contains only one variable, you can solve for x directly.
x=1040
Add 600 to 440.
x=1040,y=440
The system is now solved.
x-y=600,1.3x-0.8y=1000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1.3&-0.8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}600\\1000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1.3&-0.8\end{matrix}\right))\left(\begin{matrix}1&-1\\1.3&-0.8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.3&-0.8\end{matrix}\right))\left(\begin{matrix}600\\1000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1.3&-0.8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.3&-0.8\end{matrix}\right))\left(\begin{matrix}600\\1000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1.3&-0.8\end{matrix}\right))\left(\begin{matrix}600\\1000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.8}{-0.8-\left(-1.3\right)}&-\frac{-1}{-0.8-\left(-1.3\right)}\\-\frac{1.3}{-0.8-\left(-1.3\right)}&\frac{1}{-0.8-\left(-1.3\right)}\end{matrix}\right)\left(\begin{matrix}600\\1000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1.6&2\\-2.6&2\end{matrix}\right)\left(\begin{matrix}600\\1000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1.6\times 600+2\times 1000\\-2.6\times 600+2\times 1000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1040\\440\end{matrix}\right)
Do the arithmetic.
x=1040,y=440
Extract the matrix elements x and y.
x-y=600,1.3x-0.8y=1000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1.3x+1.3\left(-1\right)y=1.3\times 600,1.3x-0.8y=1000
To make x and \frac{13x}{10} equal, multiply all terms on each side of the first equation by 1.3 and all terms on each side of the second by 1.
1.3x-1.3y=780,1.3x-0.8y=1000
Simplify.
1.3x-1.3x-1.3y+0.8y=780-1000
Subtract 1.3x-0.8y=1000 from 1.3x-1.3y=780 by subtracting like terms on each side of the equal sign.
-1.3y+0.8y=780-1000
Add \frac{13x}{10} to -\frac{13x}{10}. Terms \frac{13x}{10} and -\frac{13x}{10} cancel out, leaving an equation with only one variable that can be solved.
-0.5y=780-1000
Add -\frac{13y}{10} to \frac{4y}{5}.
-0.5y=-220
Add 780 to -1000.
y=440
Multiply both sides by -2.
1.3x-0.8\times 440=1000
Substitute 440 for y in 1.3x-0.8y=1000. Because the resulting equation contains only one variable, you can solve for x directly.
1.3x-352=1000
Multiply -0.8 times 440.
1.3x=1352
Add 352 to both sides of the equation.
x=1040
Divide both sides of the equation by 1.3, which is the same as multiplying both sides by the reciprocal of the fraction.
x=1040,y=440
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}