Solve for x, y
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
y = -\frac{17}{6} = -2\frac{5}{6} \approx -2.833333333
Graph
Share
Copied to clipboard
3x=2-6
Consider the second equation. Subtract 6 from both sides.
3x=-4
Subtract 6 from 2 to get -4.
x=-\frac{4}{3}
Divide both sides by 3.
-\frac{4}{3}-4y=10
Consider the first equation. Insert the known values of variables into the equation.
-4y=10+\frac{4}{3}
Add \frac{4}{3} to both sides.
-4y=\frac{34}{3}
Add 10 and \frac{4}{3} to get \frac{34}{3}.
y=\frac{\frac{34}{3}}{-4}
Divide both sides by -4.
y=\frac{34}{3\left(-4\right)}
Express \frac{\frac{34}{3}}{-4} as a single fraction.
y=\frac{34}{-12}
Multiply 3 and -4 to get -12.
y=-\frac{17}{6}
Reduce the fraction \frac{34}{-12} to lowest terms by extracting and canceling out 2.
x=-\frac{4}{3} y=-\frac{17}{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}