Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

1850x+500y=22000000,x+y=11475
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
1850x+500y=22000000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
1850x=-500y+22000000
Subtract 500y from both sides of the equation.
x=\frac{1}{1850}\left(-500y+22000000\right)
Divide both sides by 1850.
x=-\frac{10}{37}y+\frac{440000}{37}
Multiply \frac{1}{1850} times -500y+22000000.
-\frac{10}{37}y+\frac{440000}{37}+y=11475
Substitute \frac{-10y+440000}{37} for x in the other equation, x+y=11475.
\frac{27}{37}y+\frac{440000}{37}=11475
Add -\frac{10y}{37} to y.
\frac{27}{37}y=-\frac{15425}{37}
Subtract \frac{440000}{37} from both sides of the equation.
y=-\frac{15425}{27}
Divide both sides of the equation by \frac{27}{37}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{10}{37}\left(-\frac{15425}{27}\right)+\frac{440000}{37}
Substitute -\frac{15425}{27} for y in x=-\frac{10}{37}y+\frac{440000}{37}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{154250}{999}+\frac{440000}{37}
Multiply -\frac{10}{37} times -\frac{15425}{27} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{325250}{27}
Add \frac{440000}{37} to \frac{154250}{999} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{325250}{27},y=-\frac{15425}{27}
The system is now solved.
1850x+500y=22000000,x+y=11475
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1850&500\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22000000\\11475\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1850&500\\1&1\end{matrix}\right))\left(\begin{matrix}1850&500\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1850&500\\1&1\end{matrix}\right))\left(\begin{matrix}22000000\\11475\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1850&500\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1850&500\\1&1\end{matrix}\right))\left(\begin{matrix}22000000\\11475\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1850&500\\1&1\end{matrix}\right))\left(\begin{matrix}22000000\\11475\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1850-500}&-\frac{500}{1850-500}\\-\frac{1}{1850-500}&\frac{1850}{1850-500}\end{matrix}\right)\left(\begin{matrix}22000000\\11475\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1350}&-\frac{10}{27}\\-\frac{1}{1350}&\frac{37}{27}\end{matrix}\right)\left(\begin{matrix}22000000\\11475\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1350}\times 22000000-\frac{10}{27}\times 11475\\-\frac{1}{1350}\times 22000000+\frac{37}{27}\times 11475\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{325250}{27}\\-\frac{15425}{27}\end{matrix}\right)
Do the arithmetic.
x=\frac{325250}{27},y=-\frac{15425}{27}
Extract the matrix elements x and y.
1850x+500y=22000000,x+y=11475
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1850x+500y=22000000,1850x+1850y=1850\times 11475
To make 1850x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 1850.
1850x+500y=22000000,1850x+1850y=21228750
Simplify.
1850x-1850x+500y-1850y=22000000-21228750
Subtract 1850x+1850y=21228750 from 1850x+500y=22000000 by subtracting like terms on each side of the equal sign.
500y-1850y=22000000-21228750
Add 1850x to -1850x. Terms 1850x and -1850x cancel out, leaving an equation with only one variable that can be solved.
-1350y=22000000-21228750
Add 500y to -1850y.
-1350y=771250
Add 22000000 to -21228750.
y=-\frac{15425}{27}
Divide both sides by -1350.
x-\frac{15425}{27}=11475
Substitute -\frac{15425}{27} for y in x+y=11475. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{325250}{27}
Add \frac{15425}{27} to both sides of the equation.
x=\frac{325250}{27},y=-\frac{15425}{27}
The system is now solved.