Solve for x, y
x=1\text{, }y=-1
x=-\frac{1}{5}=-0.2\text{, }y=\frac{7}{5}=1.4
Graph
Share
Copied to clipboard
2x+y=1,y^{2}+x^{2}=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=1
Solve 2x+y=1 for x by isolating x on the left hand side of the equal sign.
2x=-y+1
Subtract y from both sides of the equation.
x=-\frac{1}{2}y+\frac{1}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{1}{2}y+\frac{1}{2}\right)^{2}=2
Substitute -\frac{1}{2}y+\frac{1}{2} for x in the other equation, y^{2}+x^{2}=2.
y^{2}+\frac{1}{4}y^{2}-\frac{1}{2}y+\frac{1}{4}=2
Square -\frac{1}{2}y+\frac{1}{2}.
\frac{5}{4}y^{2}-\frac{1}{2}y+\frac{1}{4}=2
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-\frac{1}{2}y-\frac{7}{4}=0
Subtract 2 from both sides of the equation.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-\frac{7}{4}\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{2}\right)^{2} for a, 1\times \frac{1}{2}\left(-\frac{1}{2}\right)\times 2 for b, and -\frac{7}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-\frac{7}{4}\right)}}{2\times \frac{5}{4}}
Square 1\times \frac{1}{2}\left(-\frac{1}{2}\right)\times 2.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\left(-\frac{7}{4}\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1+35}{4}}}{2\times \frac{5}{4}}
Multiply -5 times -\frac{7}{4}.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{9}}{2\times \frac{5}{4}}
Add \frac{1}{4} to \frac{35}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{1}{2}\right)±3}{2\times \frac{5}{4}}
Take the square root of 9.
y=\frac{\frac{1}{2}±3}{2\times \frac{5}{4}}
The opposite of 1\times \frac{1}{2}\left(-\frac{1}{2}\right)\times 2 is \frac{1}{2}.
y=\frac{\frac{1}{2}±3}{\frac{5}{2}}
Multiply 2 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{\frac{7}{2}}{\frac{5}{2}}
Now solve the equation y=\frac{\frac{1}{2}±3}{\frac{5}{2}} when ± is plus. Add \frac{1}{2} to 3.
y=\frac{7}{5}
Divide \frac{7}{2} by \frac{5}{2} by multiplying \frac{7}{2} by the reciprocal of \frac{5}{2}.
y=-\frac{\frac{5}{2}}{\frac{5}{2}}
Now solve the equation y=\frac{\frac{1}{2}±3}{\frac{5}{2}} when ± is minus. Subtract 3 from \frac{1}{2}.
y=-1
Divide -\frac{5}{2} by \frac{5}{2} by multiplying -\frac{5}{2} by the reciprocal of \frac{5}{2}.
x=-\frac{1}{2}\times \frac{7}{5}+\frac{1}{2}
There are two solutions for y: \frac{7}{5} and -1. Substitute \frac{7}{5} for y in the equation x=-\frac{1}{2}y+\frac{1}{2} to find the corresponding solution for x that satisfies both equations.
x=-\frac{7}{10}+\frac{1}{2}
Multiply -\frac{1}{2} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{5}
Add -\frac{1}{2}\times \frac{7}{5} to \frac{1}{2}.
x=-\frac{1}{2}\left(-1\right)+\frac{1}{2}
Now substitute -1 for y in the equation x=-\frac{1}{2}y+\frac{1}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{1+1}{2}
Multiply -\frac{1}{2} times -1.
x=1
Add -\left(-\frac{1}{2}\right) to \frac{1}{2}.
x=-\frac{1}{5},y=\frac{7}{5}\text{ or }x=1,y=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}