Solve for x, y (complex solution)
x=\frac{9+\sqrt{23}i}{4}\approx 2.25+1.198957881i\text{, }y=\frac{-\sqrt{23}i+3}{4}\approx 0.75-1.198957881i
x=\frac{-\sqrt{23}i+9}{4}\approx 2.25-1.198957881i\text{, }y=\frac{3+\sqrt{23}i}{4}\approx 0.75+1.198957881i
Graph
Share
Copied to clipboard
x+y=3
Solve x+y=3 for x by isolating x on the left hand side of the equal sign.
x=-y+3
Subtract y from both sides of the equation.
3y^{2}+\left(-y+3\right)^{2}=1
Substitute -y+3 for x in the other equation, 3y^{2}+x^{2}=1.
3y^{2}+y^{2}-6y+9=1
Square -y+3.
4y^{2}-6y+9=1
Add 3y^{2} to y^{2}.
4y^{2}-6y+8=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4\times 8}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+1\left(-1\right)^{2} for a, 1\times 3\left(-1\right)\times 2 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 4\times 8}}{2\times 4}
Square 1\times 3\left(-1\right)\times 2.
y=\frac{-\left(-6\right)±\sqrt{36-16\times 8}}{2\times 4}
Multiply -4 times 3+1\left(-1\right)^{2}.
y=\frac{-\left(-6\right)±\sqrt{36-128}}{2\times 4}
Multiply -16 times 8.
y=\frac{-\left(-6\right)±\sqrt{-92}}{2\times 4}
Add 36 to -128.
y=\frac{-\left(-6\right)±2\sqrt{23}i}{2\times 4}
Take the square root of -92.
y=\frac{6±2\sqrt{23}i}{2\times 4}
The opposite of 1\times 3\left(-1\right)\times 2 is 6.
y=\frac{6±2\sqrt{23}i}{8}
Multiply 2 times 3+1\left(-1\right)^{2}.
y=\frac{6+2\sqrt{23}i}{8}
Now solve the equation y=\frac{6±2\sqrt{23}i}{8} when ± is plus. Add 6 to 2i\sqrt{23}.
y=\frac{3+\sqrt{23}i}{4}
Divide 6+2i\sqrt{23} by 8.
y=\frac{-2\sqrt{23}i+6}{8}
Now solve the equation y=\frac{6±2\sqrt{23}i}{8} when ± is minus. Subtract 2i\sqrt{23} from 6.
y=\frac{-\sqrt{23}i+3}{4}
Divide 6-2i\sqrt{23} by 8.
x=-\frac{3+\sqrt{23}i}{4}+3
There are two solutions for y: \frac{3+i\sqrt{23}}{4} and \frac{3-i\sqrt{23}}{4}. Substitute \frac{3+i\sqrt{23}}{4} for y in the equation x=-y+3 to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\sqrt{23}i+3}{4}+3
Now substitute \frac{3-i\sqrt{23}}{4} for y in the equation x=-y+3 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{3+\sqrt{23}i}{4}+3,y=\frac{3+\sqrt{23}i}{4}\text{ or }x=-\frac{-\sqrt{23}i+3}{4}+3,y=\frac{-\sqrt{23}i+3}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}