Solve for x, y
x=90
y=30
Graph
Share
Copied to clipboard
x-3y=0
Consider the first equation. Subtract 3y from both sides.
x-10=2y+20
Consider the second equation. Use the distributive property to multiply 2 by y+10.
x-10-2y=20
Subtract 2y from both sides.
x-2y=20+10
Add 10 to both sides.
x-2y=30
Add 20 and 10 to get 30.
x-3y=0,x-2y=30
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=3y
Add 3y to both sides of the equation.
3y-2y=30
Substitute 3y for x in the other equation, x-2y=30.
y=30
Add 3y to -2y.
x=3\times 30
Substitute 30 for y in x=3y. Because the resulting equation contains only one variable, you can solve for x directly.
x=90
Multiply 3 times 30.
x=90,y=30
The system is now solved.
x-3y=0
Consider the first equation. Subtract 3y from both sides.
x-10=2y+20
Consider the second equation. Use the distributive property to multiply 2 by y+10.
x-10-2y=20
Subtract 2y from both sides.
x-2y=20+10
Add 10 to both sides.
x-2y=30
Add 20 and 10 to get 30.
x-3y=0,x-2y=30
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\30\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\30\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-3\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\30\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\30\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-3\right)}&-\frac{-3}{-2-\left(-3\right)}\\-\frac{1}{-2-\left(-3\right)}&\frac{1}{-2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\30\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}0\\30\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 30\\30\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}90\\30\end{matrix}\right)
Do the arithmetic.
x=90,y=30
Extract the matrix elements x and y.
x-3y=0
Consider the first equation. Subtract 3y from both sides.
x-10=2y+20
Consider the second equation. Use the distributive property to multiply 2 by y+10.
x-10-2y=20
Subtract 2y from both sides.
x-2y=20+10
Add 10 to both sides.
x-2y=30
Add 20 and 10 to get 30.
x-3y=0,x-2y=30
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x-3y+2y=-30
Subtract x-2y=30 from x-3y=0 by subtracting like terms on each side of the equal sign.
-3y+2y=-30
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-y=-30
Add -3y to 2y.
y=30
Divide both sides by -1.
x-2\times 30=30
Substitute 30 for y in x-2y=30. Because the resulting equation contains only one variable, you can solve for x directly.
x-60=30
Multiply -2 times 30.
x=90
Add 60 to both sides of the equation.
x=90,y=30
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}