Solve for x, y, c
x=-4
y = -\frac{21}{5} = -4\frac{1}{5} = -4.2
c = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
3\left(-4\right)-5y=9
Consider the second equation. Insert the known values of variables into the equation.
-12-5y=9
Multiply 3 and -4 to get -12.
-5y=9+12
Add 12 to both sides.
-5y=21
Add 9 and 12 to get 21.
y=-\frac{21}{5}
Divide both sides by -5.
6\left(-4\right)-6\left(-\frac{21}{5}\right)=c
Consider the third equation. Insert the known values of variables into the equation.
-24-6\left(-\frac{21}{5}\right)=c
Multiply 6 and -4 to get -24.
-24+\frac{126}{5}=c
Multiply -6 and -\frac{21}{5} to get \frac{126}{5}.
\frac{6}{5}=c
Add -24 and \frac{126}{5} to get \frac{6}{5}.
c=\frac{6}{5}
Swap sides so that all variable terms are on the left hand side.
x=-4 y=-\frac{21}{5} c=\frac{6}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}