Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=8,40x+55y=410
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=8
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+8
Subtract y from both sides of the equation.
40\left(-y+8\right)+55y=410
Substitute -y+8 for x in the other equation, 40x+55y=410.
-40y+320+55y=410
Multiply 40 times -y+8.
15y+320=410
Add -40y to 55y.
15y=90
Subtract 320 from both sides of the equation.
y=6
Divide both sides by 15.
x=-6+8
Substitute 6 for y in x=-y+8. Because the resulting equation contains only one variable, you can solve for x directly.
x=2
Add 8 to -6.
x=2,y=6
The system is now solved.
x+y=8,40x+55y=410
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\40&55\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\410\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\40&55\end{matrix}\right))\left(\begin{matrix}1&1\\40&55\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&55\end{matrix}\right))\left(\begin{matrix}8\\410\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\40&55\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&55\end{matrix}\right))\left(\begin{matrix}8\\410\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&55\end{matrix}\right))\left(\begin{matrix}8\\410\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{55}{55-40}&-\frac{1}{55-40}\\-\frac{40}{55-40}&\frac{1}{55-40}\end{matrix}\right)\left(\begin{matrix}8\\410\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{3}&-\frac{1}{15}\\-\frac{8}{3}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}8\\410\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{3}\times 8-\frac{1}{15}\times 410\\-\frac{8}{3}\times 8+\frac{1}{15}\times 410\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
Do the arithmetic.
x=2,y=6
Extract the matrix elements x and y.
x+y=8,40x+55y=410
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40x+40y=40\times 8,40x+55y=410
To make x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 1.
40x+40y=320,40x+55y=410
Simplify.
40x-40x+40y-55y=320-410
Subtract 40x+55y=410 from 40x+40y=320 by subtracting like terms on each side of the equal sign.
40y-55y=320-410
Add 40x to -40x. Terms 40x and -40x cancel out, leaving an equation with only one variable that can be solved.
-15y=320-410
Add 40y to -55y.
-15y=-90
Add 320 to -410.
y=6
Divide both sides by -15.
40x+55\times 6=410
Substitute 6 for y in 40x+55y=410. Because the resulting equation contains only one variable, you can solve for x directly.
40x+330=410
Multiply 55 times 6.
40x=80
Subtract 330 from both sides of the equation.
x=2
Divide both sides by 40.
x=2,y=6
The system is now solved.