Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=75,50x+70y=4250
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=75
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+75
Subtract y from both sides of the equation.
50\left(-y+75\right)+70y=4250
Substitute -y+75 for x in the other equation, 50x+70y=4250.
-50y+3750+70y=4250
Multiply 50 times -y+75.
20y+3750=4250
Add -50y to 70y.
20y=500
Subtract 3750 from both sides of the equation.
y=25
Divide both sides by 20.
x=-25+75
Substitute 25 for y in x=-y+75. Because the resulting equation contains only one variable, you can solve for x directly.
x=50
Add 75 to -25.
x=50,y=25
The system is now solved.
x+y=75,50x+70y=4250
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\50&70\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}75\\4250\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\50&70\end{matrix}\right))\left(\begin{matrix}1&1\\50&70\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&70\end{matrix}\right))\left(\begin{matrix}75\\4250\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\50&70\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&70\end{matrix}\right))\left(\begin{matrix}75\\4250\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&70\end{matrix}\right))\left(\begin{matrix}75\\4250\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{70}{70-50}&-\frac{1}{70-50}\\-\frac{50}{70-50}&\frac{1}{70-50}\end{matrix}\right)\left(\begin{matrix}75\\4250\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{20}\\-\frac{5}{2}&\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}75\\4250\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 75-\frac{1}{20}\times 4250\\-\frac{5}{2}\times 75+\frac{1}{20}\times 4250\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\25\end{matrix}\right)
Do the arithmetic.
x=50,y=25
Extract the matrix elements x and y.
x+y=75,50x+70y=4250
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
50x+50y=50\times 75,50x+70y=4250
To make x and 50x equal, multiply all terms on each side of the first equation by 50 and all terms on each side of the second by 1.
50x+50y=3750,50x+70y=4250
Simplify.
50x-50x+50y-70y=3750-4250
Subtract 50x+70y=4250 from 50x+50y=3750 by subtracting like terms on each side of the equal sign.
50y-70y=3750-4250
Add 50x to -50x. Terms 50x and -50x cancel out, leaving an equation with only one variable that can be solved.
-20y=3750-4250
Add 50y to -70y.
-20y=-500
Add 3750 to -4250.
y=25
Divide both sides by -20.
50x+70\times 25=4250
Substitute 25 for y in 50x+70y=4250. Because the resulting equation contains only one variable, you can solve for x directly.
50x+1750=4250
Multiply 70 times 25.
50x=2500
Subtract 1750 from both sides of the equation.
x=50
Divide both sides by 50.
x=50,y=25
The system is now solved.