Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=70,2x+4y=180
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=70
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+70
Subtract y from both sides of the equation.
2\left(-y+70\right)+4y=180
Substitute -y+70 for x in the other equation, 2x+4y=180.
-2y+140+4y=180
Multiply 2 times -y+70.
2y+140=180
Add -2y to 4y.
2y=40
Subtract 140 from both sides of the equation.
y=20
Divide both sides by 2.
x=-20+70
Substitute 20 for y in x=-y+70. Because the resulting equation contains only one variable, you can solve for x directly.
x=50
Add 70 to -20.
x=50,y=20
The system is now solved.
x+y=70,2x+4y=180
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}70\\180\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}70\\180\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}70\\180\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}70\\180\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{1}{4-2}\end{matrix}\right)\left(\begin{matrix}70\\180\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{2}\\-1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}70\\180\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 70-\frac{1}{2}\times 180\\-70+\frac{1}{2}\times 180\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\20\end{matrix}\right)
Do the arithmetic.
x=50,y=20
Extract the matrix elements x and y.
x+y=70,2x+4y=180
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2y=2\times 70,2x+4y=180
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x+2y=140,2x+4y=180
Simplify.
2x-2x+2y-4y=140-180
Subtract 2x+4y=180 from 2x+2y=140 by subtracting like terms on each side of the equal sign.
2y-4y=140-180
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-2y=140-180
Add 2y to -4y.
-2y=-40
Add 140 to -180.
y=20
Divide both sides by -2.
2x+4\times 20=180
Substitute 20 for y in 2x+4y=180. Because the resulting equation contains only one variable, you can solve for x directly.
2x+80=180
Multiply 4 times 20.
2x=100
Subtract 80 from both sides of the equation.
x=50
Divide both sides by 2.
x=50,y=20
The system is now solved.