Solve for x, y
x=25
y=35
Graph
Share
Copied to clipboard
x+y=60,35x+40y=2275
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=60
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+60
Subtract y from both sides of the equation.
35\left(-y+60\right)+40y=2275
Substitute -y+60 for x in the other equation, 35x+40y=2275.
-35y+2100+40y=2275
Multiply 35 times -y+60.
5y+2100=2275
Add -35y to 40y.
5y=175
Subtract 2100 from both sides of the equation.
y=35
Divide both sides by 5.
x=-35+60
Substitute 35 for y in x=-y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=25
Add 60 to -35.
x=25,y=35
The system is now solved.
x+y=60,35x+40y=2275
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\35&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\2275\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\35&40\end{matrix}\right))\left(\begin{matrix}1&1\\35&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\35&40\end{matrix}\right))\left(\begin{matrix}60\\2275\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\35&40\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\35&40\end{matrix}\right))\left(\begin{matrix}60\\2275\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\35&40\end{matrix}\right))\left(\begin{matrix}60\\2275\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{40-35}&-\frac{1}{40-35}\\-\frac{35}{40-35}&\frac{1}{40-35}\end{matrix}\right)\left(\begin{matrix}60\\2275\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8&-\frac{1}{5}\\-7&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}60\\2275\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\times 60-\frac{1}{5}\times 2275\\-7\times 60+\frac{1}{5}\times 2275\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\35\end{matrix}\right)
Do the arithmetic.
x=25,y=35
Extract the matrix elements x and y.
x+y=60,35x+40y=2275
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
35x+35y=35\times 60,35x+40y=2275
To make x and 35x equal, multiply all terms on each side of the first equation by 35 and all terms on each side of the second by 1.
35x+35y=2100,35x+40y=2275
Simplify.
35x-35x+35y-40y=2100-2275
Subtract 35x+40y=2275 from 35x+35y=2100 by subtracting like terms on each side of the equal sign.
35y-40y=2100-2275
Add 35x to -35x. Terms 35x and -35x cancel out, leaving an equation with only one variable that can be solved.
-5y=2100-2275
Add 35y to -40y.
-5y=-175
Add 2100 to -2275.
y=35
Divide both sides by -5.
35x+40\times 35=2275
Substitute 35 for y in 35x+40y=2275. Because the resulting equation contains only one variable, you can solve for x directly.
35x+1400=2275
Multiply 40 times 35.
35x=875
Subtract 1400 from both sides of the equation.
x=25
Divide both sides by 35.
x=25,y=35
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}