Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=60,15x+25y=1150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=60
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+60
Subtract y from both sides of the equation.
15\left(-y+60\right)+25y=1150
Substitute -y+60 for x in the other equation, 15x+25y=1150.
-15y+900+25y=1150
Multiply 15 times -y+60.
10y+900=1150
Add -15y to 25y.
10y=250
Subtract 900 from both sides of the equation.
y=25
Divide both sides by 10.
x=-25+60
Substitute 25 for y in x=-y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=35
Add 60 to -25.
x=35,y=25
The system is now solved.
x+y=60,15x+25y=1150
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\15&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\1150\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\15&25\end{matrix}\right))\left(\begin{matrix}1&1\\15&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&25\end{matrix}\right))\left(\begin{matrix}60\\1150\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\15&25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&25\end{matrix}\right))\left(\begin{matrix}60\\1150\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&25\end{matrix}\right))\left(\begin{matrix}60\\1150\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-15}&-\frac{1}{25-15}\\-\frac{15}{25-15}&\frac{1}{25-15}\end{matrix}\right)\left(\begin{matrix}60\\1150\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}&-\frac{1}{10}\\-\frac{3}{2}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}60\\1150\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\times 60-\frac{1}{10}\times 1150\\-\frac{3}{2}\times 60+\frac{1}{10}\times 1150\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\25\end{matrix}\right)
Do the arithmetic.
x=35,y=25
Extract the matrix elements x and y.
x+y=60,15x+25y=1150
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15x+15y=15\times 60,15x+25y=1150
To make x and 15x equal, multiply all terms on each side of the first equation by 15 and all terms on each side of the second by 1.
15x+15y=900,15x+25y=1150
Simplify.
15x-15x+15y-25y=900-1150
Subtract 15x+25y=1150 from 15x+15y=900 by subtracting like terms on each side of the equal sign.
15y-25y=900-1150
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
-10y=900-1150
Add 15y to -25y.
-10y=-250
Add 900 to -1150.
y=25
Divide both sides by -10.
15x+25\times 25=1150
Substitute 25 for y in 15x+25y=1150. Because the resulting equation contains only one variable, you can solve for x directly.
15x+625=1150
Multiply 25 times 25.
15x=525
Subtract 625 from both sides of the equation.
x=35
Divide both sides by 15.
x=35,y=25
The system is now solved.