Solve for x, y
x=325
y=175
Graph
Share
Copied to clipboard
x+y=500,8000x+13500y=4962500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+500
Subtract y from both sides of the equation.
8000\left(-y+500\right)+13500y=4962500
Substitute -y+500 for x in the other equation, 8000x+13500y=4962500.
-8000y+4000000+13500y=4962500
Multiply 8000 times -y+500.
5500y+4000000=4962500
Add -8000y to 13500y.
5500y=962500
Subtract 4000000 from both sides of the equation.
y=175
Divide both sides by 5500.
x=-175+500
Substitute 175 for y in x=-y+500. Because the resulting equation contains only one variable, you can solve for x directly.
x=325
Add 500 to -175.
x=325,y=175
The system is now solved.
x+y=500,8000x+13500y=4962500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\8000&13500\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\4962500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\8000&13500\end{matrix}\right))\left(\begin{matrix}1&1\\8000&13500\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8000&13500\end{matrix}\right))\left(\begin{matrix}500\\4962500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\8000&13500\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8000&13500\end{matrix}\right))\left(\begin{matrix}500\\4962500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8000&13500\end{matrix}\right))\left(\begin{matrix}500\\4962500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13500}{13500-8000}&-\frac{1}{13500-8000}\\-\frac{8000}{13500-8000}&\frac{1}{13500-8000}\end{matrix}\right)\left(\begin{matrix}500\\4962500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{11}&-\frac{1}{5500}\\-\frac{16}{11}&\frac{1}{5500}\end{matrix}\right)\left(\begin{matrix}500\\4962500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{11}\times 500-\frac{1}{5500}\times 4962500\\-\frac{16}{11}\times 500+\frac{1}{5500}\times 4962500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}325\\175\end{matrix}\right)
Do the arithmetic.
x=325,y=175
Extract the matrix elements x and y.
x+y=500,8000x+13500y=4962500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8000x+8000y=8000\times 500,8000x+13500y=4962500
To make x and 8000x equal, multiply all terms on each side of the first equation by 8000 and all terms on each side of the second by 1.
8000x+8000y=4000000,8000x+13500y=4962500
Simplify.
8000x-8000x+8000y-13500y=4000000-4962500
Subtract 8000x+13500y=4962500 from 8000x+8000y=4000000 by subtracting like terms on each side of the equal sign.
8000y-13500y=4000000-4962500
Add 8000x to -8000x. Terms 8000x and -8000x cancel out, leaving an equation with only one variable that can be solved.
-5500y=4000000-4962500
Add 8000y to -13500y.
-5500y=-962500
Add 4000000 to -4962500.
y=175
Divide both sides by -5500.
8000x+13500\times 175=4962500
Substitute 175 for y in 8000x+13500y=4962500. Because the resulting equation contains only one variable, you can solve for x directly.
8000x+2362500=4962500
Multiply 13500 times 175.
8000x=2600000
Subtract 2362500 from both sides of the equation.
x=325
Divide both sides by 8000.
x=325,y=175
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}