Solve for x, y
x=392
y=22
Graph
Share
Copied to clipboard
x+y=414,55x+32y=22264
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=414
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+414
Subtract y from both sides of the equation.
55\left(-y+414\right)+32y=22264
Substitute -y+414 for x in the other equation, 55x+32y=22264.
-55y+22770+32y=22264
Multiply 55 times -y+414.
-23y+22770=22264
Add -55y to 32y.
-23y=-506
Subtract 22770 from both sides of the equation.
y=22
Divide both sides by -23.
x=-22+414
Substitute 22 for y in x=-y+414. Because the resulting equation contains only one variable, you can solve for x directly.
x=392
Add 414 to -22.
x=392,y=22
The system is now solved.
x+y=414,55x+32y=22264
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\55&32\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}414\\22264\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\55&32\end{matrix}\right))\left(\begin{matrix}1&1\\55&32\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\55&32\end{matrix}\right))\left(\begin{matrix}414\\22264\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\55&32\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\55&32\end{matrix}\right))\left(\begin{matrix}414\\22264\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\55&32\end{matrix}\right))\left(\begin{matrix}414\\22264\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{32}{32-55}&-\frac{1}{32-55}\\-\frac{55}{32-55}&\frac{1}{32-55}\end{matrix}\right)\left(\begin{matrix}414\\22264\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{32}{23}&\frac{1}{23}\\\frac{55}{23}&-\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}414\\22264\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{32}{23}\times 414+\frac{1}{23}\times 22264\\\frac{55}{23}\times 414-\frac{1}{23}\times 22264\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}392\\22\end{matrix}\right)
Do the arithmetic.
x=392,y=22
Extract the matrix elements x and y.
x+y=414,55x+32y=22264
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
55x+55y=55\times 414,55x+32y=22264
To make x and 55x equal, multiply all terms on each side of the first equation by 55 and all terms on each side of the second by 1.
55x+55y=22770,55x+32y=22264
Simplify.
55x-55x+55y-32y=22770-22264
Subtract 55x+32y=22264 from 55x+55y=22770 by subtracting like terms on each side of the equal sign.
55y-32y=22770-22264
Add 55x to -55x. Terms 55x and -55x cancel out, leaving an equation with only one variable that can be solved.
23y=22770-22264
Add 55y to -32y.
23y=506
Add 22770 to -22264.
y=22
Divide both sides by 23.
55x+32\times 22=22264
Substitute 22 for y in 55x+32y=22264. Because the resulting equation contains only one variable, you can solve for x directly.
55x+704=22264
Multiply 32 times 22.
55x=21560
Subtract 704 from both sides of the equation.
x=392
Divide both sides by 55.
x=392,y=22
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}