Solve for x, y
x=1900
y=1700
Graph
Share
Copied to clipboard
x+y=3600,4x+2y=11000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=3600
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+3600
Subtract y from both sides of the equation.
4\left(-y+3600\right)+2y=11000
Substitute -y+3600 for x in the other equation, 4x+2y=11000.
-4y+14400+2y=11000
Multiply 4 times -y+3600.
-2y+14400=11000
Add -4y to 2y.
-2y=-3400
Subtract 14400 from both sides of the equation.
y=1700
Divide both sides by -2.
x=-1700+3600
Substitute 1700 for y in x=-y+3600. Because the resulting equation contains only one variable, you can solve for x directly.
x=1900
Add 3600 to -1700.
x=1900,y=1700
The system is now solved.
x+y=3600,4x+2y=11000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3600\\11000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}3600\\11000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}3600\\11000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3600\\11000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3600+\frac{1}{2}\times 11000\\2\times 3600-\frac{1}{2}\times 11000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1900\\1700\end{matrix}\right)
Do the arithmetic.
x=1900,y=1700
Extract the matrix elements x and y.
x+y=3600,4x+2y=11000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4y=4\times 3600,4x+2y=11000
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+4y=14400,4x+2y=11000
Simplify.
4x-4x+4y-2y=14400-11000
Subtract 4x+2y=11000 from 4x+4y=14400 by subtracting like terms on each side of the equal sign.
4y-2y=14400-11000
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
2y=14400-11000
Add 4y to -2y.
2y=3400
Add 14400 to -11000.
y=1700
Divide both sides by 2.
4x+2\times 1700=11000
Substitute 1700 for y in 4x+2y=11000. Because the resulting equation contains only one variable, you can solve for x directly.
4x+3400=11000
Multiply 2 times 1700.
4x=7600
Subtract 3400 from both sides of the equation.
x=1900
Divide both sides by 4.
x=1900,y=1700
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}