Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=36,6000x+4000y=100500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=36
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+36
Subtract y from both sides of the equation.
6000\left(-y+36\right)+4000y=100500
Substitute -y+36 for x in the other equation, 6000x+4000y=100500.
-6000y+216000+4000y=100500
Multiply 6000 times -y+36.
-2000y+216000=100500
Add -6000y to 4000y.
-2000y=-115500
Subtract 216000 from both sides of the equation.
y=\frac{231}{4}
Divide both sides by -2000.
x=-\frac{231}{4}+36
Substitute \frac{231}{4} for y in x=-y+36. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{87}{4}
Add 36 to -\frac{231}{4}.
x=-\frac{87}{4},y=\frac{231}{4}
The system is now solved.
x+y=36,6000x+4000y=100500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\6000&4000\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36\\100500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\6000&4000\end{matrix}\right))\left(\begin{matrix}1&1\\6000&4000\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6000&4000\end{matrix}\right))\left(\begin{matrix}36\\100500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\6000&4000\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6000&4000\end{matrix}\right))\left(\begin{matrix}36\\100500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6000&4000\end{matrix}\right))\left(\begin{matrix}36\\100500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4000}{4000-6000}&-\frac{1}{4000-6000}\\-\frac{6000}{4000-6000}&\frac{1}{4000-6000}\end{matrix}\right)\left(\begin{matrix}36\\100500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&\frac{1}{2000}\\3&-\frac{1}{2000}\end{matrix}\right)\left(\begin{matrix}36\\100500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 36+\frac{1}{2000}\times 100500\\3\times 36-\frac{1}{2000}\times 100500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{87}{4}\\\frac{231}{4}\end{matrix}\right)
Do the arithmetic.
x=-\frac{87}{4},y=\frac{231}{4}
Extract the matrix elements x and y.
x+y=36,6000x+4000y=100500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6000x+6000y=6000\times 36,6000x+4000y=100500
To make x and 6000x equal, multiply all terms on each side of the first equation by 6000 and all terms on each side of the second by 1.
6000x+6000y=216000,6000x+4000y=100500
Simplify.
6000x-6000x+6000y-4000y=216000-100500
Subtract 6000x+4000y=100500 from 6000x+6000y=216000 by subtracting like terms on each side of the equal sign.
6000y-4000y=216000-100500
Add 6000x to -6000x. Terms 6000x and -6000x cancel out, leaving an equation with only one variable that can be solved.
2000y=216000-100500
Add 6000y to -4000y.
2000y=115500
Add 216000 to -100500.
y=\frac{231}{4}
Divide both sides by 2000.
6000x+4000\times \frac{231}{4}=100500
Substitute \frac{231}{4} for y in 6000x+4000y=100500. Because the resulting equation contains only one variable, you can solve for x directly.
6000x+231000=100500
Multiply 4000 times \frac{231}{4}.
6000x=-130500
Subtract 231000 from both sides of the equation.
x=-\frac{87}{4}
Divide both sides by 6000.
x=-\frac{87}{4},y=\frac{231}{4}
The system is now solved.