Solve for x, y
x=-11500
y=11750
Graph
Share
Copied to clipboard
x+y=250,9x+10y=14000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=250
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+250
Subtract y from both sides of the equation.
9\left(-y+250\right)+10y=14000
Substitute -y+250 for x in the other equation, 9x+10y=14000.
-9y+2250+10y=14000
Multiply 9 times -y+250.
y+2250=14000
Add -9y to 10y.
y=11750
Subtract 2250 from both sides of the equation.
x=-11750+250
Substitute 11750 for y in x=-y+250. Because the resulting equation contains only one variable, you can solve for x directly.
x=-11500
Add 250 to -11750.
x=-11500,y=11750
The system is now solved.
x+y=250,9x+10y=14000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\9&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}250\\14000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\9&10\end{matrix}\right))\left(\begin{matrix}1&1\\9&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\9&10\end{matrix}\right))\left(\begin{matrix}250\\14000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\9&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\9&10\end{matrix}\right))\left(\begin{matrix}250\\14000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\9&10\end{matrix}\right))\left(\begin{matrix}250\\14000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10-9}&-\frac{1}{10-9}\\-\frac{9}{10-9}&\frac{1}{10-9}\end{matrix}\right)\left(\begin{matrix}250\\14000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10&-1\\-9&1\end{matrix}\right)\left(\begin{matrix}250\\14000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\times 250-14000\\-9\times 250+14000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11500\\11750\end{matrix}\right)
Do the arithmetic.
x=-11500,y=11750
Extract the matrix elements x and y.
x+y=250,9x+10y=14000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9x+9y=9\times 250,9x+10y=14000
To make x and 9x equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by 1.
9x+9y=2250,9x+10y=14000
Simplify.
9x-9x+9y-10y=2250-14000
Subtract 9x+10y=14000 from 9x+9y=2250 by subtracting like terms on each side of the equal sign.
9y-10y=2250-14000
Add 9x to -9x. Terms 9x and -9x cancel out, leaving an equation with only one variable that can be solved.
-y=2250-14000
Add 9y to -10y.
-y=-11750
Add 2250 to -14000.
y=11750
Divide both sides by -1.
9x+10\times 11750=14000
Substitute 11750 for y in 9x+10y=14000. Because the resulting equation contains only one variable, you can solve for x directly.
9x+117500=14000
Multiply 10 times 11750.
9x=-103500
Subtract 117500 from both sides of the equation.
x=-11500
Divide both sides by 9.
x=-11500,y=11750
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}