Solve for x, y
x=5000
y=15000
Graph
Share
Copied to clipboard
x+y=20000,0.1x+0.07y=1550
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=20000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+20000
Subtract y from both sides of the equation.
0.1\left(-y+20000\right)+0.07y=1550
Substitute -y+20000 for x in the other equation, 0.1x+0.07y=1550.
-0.1y+2000+0.07y=1550
Multiply 0.1 times -y+20000.
-0.03y+2000=1550
Add -\frac{y}{10} to \frac{7y}{100}.
-0.03y=-450
Subtract 2000 from both sides of the equation.
y=15000
Divide both sides of the equation by -0.03, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-15000+20000
Substitute 15000 for y in x=-y+20000. Because the resulting equation contains only one variable, you can solve for x directly.
x=5000
Add 20000 to -15000.
x=5000,y=15000
The system is now solved.
x+y=20000,0.1x+0.07y=1550
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.1&0.07\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20000\\1550\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.1&0.07\end{matrix}\right))\left(\begin{matrix}1&1\\0.1&0.07\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.1&0.07\end{matrix}\right))\left(\begin{matrix}20000\\1550\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.1&0.07\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.1&0.07\end{matrix}\right))\left(\begin{matrix}20000\\1550\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.1&0.07\end{matrix}\right))\left(\begin{matrix}20000\\1550\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.07}{0.07-0.1}&-\frac{1}{0.07-0.1}\\-\frac{0.1}{0.07-0.1}&\frac{1}{0.07-0.1}\end{matrix}\right)\left(\begin{matrix}20000\\1550\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}&\frac{100}{3}\\\frac{10}{3}&-\frac{100}{3}\end{matrix}\right)\left(\begin{matrix}20000\\1550\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}\times 20000+\frac{100}{3}\times 1550\\\frac{10}{3}\times 20000-\frac{100}{3}\times 1550\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5000\\15000\end{matrix}\right)
Do the arithmetic.
x=5000,y=15000
Extract the matrix elements x and y.
x+y=20000,0.1x+0.07y=1550
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.1x+0.1y=0.1\times 20000,0.1x+0.07y=1550
To make x and \frac{x}{10} equal, multiply all terms on each side of the first equation by 0.1 and all terms on each side of the second by 1.
0.1x+0.1y=2000,0.1x+0.07y=1550
Simplify.
0.1x-0.1x+0.1y-0.07y=2000-1550
Subtract 0.1x+0.07y=1550 from 0.1x+0.1y=2000 by subtracting like terms on each side of the equal sign.
0.1y-0.07y=2000-1550
Add \frac{x}{10} to -\frac{x}{10}. Terms \frac{x}{10} and -\frac{x}{10} cancel out, leaving an equation with only one variable that can be solved.
0.03y=2000-1550
Add \frac{y}{10} to -\frac{7y}{100}.
0.03y=450
Add 2000 to -1550.
y=15000
Divide both sides of the equation by 0.03, which is the same as multiplying both sides by the reciprocal of the fraction.
0.1x+0.07\times 15000=1550
Substitute 15000 for y in 0.1x+0.07y=1550. Because the resulting equation contains only one variable, you can solve for x directly.
0.1x+1050=1550
Multiply 0.07 times 15000.
0.1x=500
Subtract 1050 from both sides of the equation.
x=5000
Multiply both sides by 10.
x=5000,y=15000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}