Solve for x, y
x=240
y=-40
Graph
Share
Copied to clipboard
x+y=200,\frac{7}{100}x+\frac{3}{25}y=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+200
Subtract y from both sides of the equation.
\frac{7}{100}\left(-y+200\right)+\frac{3}{25}y=12
Substitute -y+200 for x in the other equation, \frac{7}{100}x+\frac{3}{25}y=12.
-\frac{7}{100}y+14+\frac{3}{25}y=12
Multiply \frac{7}{100} times -y+200.
\frac{1}{20}y+14=12
Add -\frac{7y}{100} to \frac{3y}{25}.
\frac{1}{20}y=-2
Subtract 14 from both sides of the equation.
y=-40
Multiply both sides by 20.
x=-\left(-40\right)+200
Substitute -40 for y in x=-y+200. Because the resulting equation contains only one variable, you can solve for x directly.
x=40+200
Multiply -1 times -40.
x=240
Add 200 to 40.
x=240,y=-40
The system is now solved.
x+y=200,\frac{7}{100}x+\frac{3}{25}y=12
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{7}{100}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{7}{100}&\frac{3}{25}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{7}{100}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{7}{100}&\frac{3}{25}\end{matrix}\right))\left(\begin{matrix}200\\12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{7}{100}&\frac{3}{25}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{7}{100}&\frac{3}{25}\end{matrix}\right))\left(\begin{matrix}200\\12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{7}{100}&\frac{3}{25}\end{matrix}\right))\left(\begin{matrix}200\\12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{3}{25}}{\frac{3}{25}-\frac{7}{100}}&-\frac{1}{\frac{3}{25}-\frac{7}{100}}\\-\frac{\frac{7}{100}}{\frac{3}{25}-\frac{7}{100}}&\frac{1}{\frac{3}{25}-\frac{7}{100}}\end{matrix}\right)\left(\begin{matrix}200\\12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{5}&-20\\-\frac{7}{5}&20\end{matrix}\right)\left(\begin{matrix}200\\12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{5}\times 200-20\times 12\\-\frac{7}{5}\times 200+20\times 12\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\-40\end{matrix}\right)
Do the arithmetic.
x=240,y=-40
Extract the matrix elements x and y.
x+y=200,\frac{7}{100}x+\frac{3}{25}y=12
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{7}{100}x+\frac{7}{100}y=\frac{7}{100}\times 200,\frac{7}{100}x+\frac{3}{25}y=12
To make x and \frac{7x}{100} equal, multiply all terms on each side of the first equation by \frac{7}{100} and all terms on each side of the second by 1.
\frac{7}{100}x+\frac{7}{100}y=14,\frac{7}{100}x+\frac{3}{25}y=12
Simplify.
\frac{7}{100}x-\frac{7}{100}x+\frac{7}{100}y-\frac{3}{25}y=14-12
Subtract \frac{7}{100}x+\frac{3}{25}y=12 from \frac{7}{100}x+\frac{7}{100}y=14 by subtracting like terms on each side of the equal sign.
\frac{7}{100}y-\frac{3}{25}y=14-12
Add \frac{7x}{100} to -\frac{7x}{100}. Terms \frac{7x}{100} and -\frac{7x}{100} cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{20}y=14-12
Add \frac{7y}{100} to -\frac{3y}{25}.
-\frac{1}{20}y=2
Add 14 to -12.
y=-40
Multiply both sides by -20.
\frac{7}{100}x+\frac{3}{25}\left(-40\right)=12
Substitute -40 for y in \frac{7}{100}x+\frac{3}{25}y=12. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{7}{100}x-\frac{24}{5}=12
Multiply \frac{3}{25} times -40.
\frac{7}{100}x=\frac{84}{5}
Add \frac{24}{5} to both sides of the equation.
x=240
Divide both sides of the equation by \frac{7}{100}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=240,y=-40
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}