Solve for x, y
x=-30000
y=31500
Graph
Share
Copied to clipboard
x+y=1500,0.06x+0.075y=562.5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1500
Subtract y from both sides of the equation.
0.06\left(-y+1500\right)+0.075y=562.5
Substitute -y+1500 for x in the other equation, 0.06x+0.075y=562.5.
-0.06y+90+0.075y=562.5
Multiply 0.06 times -y+1500.
0.015y+90=562.5
Add -\frac{3y}{50} to \frac{3y}{40}.
0.015y=472.5
Subtract 90 from both sides of the equation.
y=31500
Divide both sides of the equation by 0.015, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-31500+1500
Substitute 31500 for y in x=-y+1500. Because the resulting equation contains only one variable, you can solve for x directly.
x=-30000
Add 1500 to -31500.
x=-30000,y=31500
The system is now solved.
x+y=1500,0.06x+0.075y=562.5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.06&0.075\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1500\\562.5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.06&0.075\end{matrix}\right))\left(\begin{matrix}1&1\\0.06&0.075\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.06&0.075\end{matrix}\right))\left(\begin{matrix}1500\\562.5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.06&0.075\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.06&0.075\end{matrix}\right))\left(\begin{matrix}1500\\562.5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.06&0.075\end{matrix}\right))\left(\begin{matrix}1500\\562.5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.075}{0.075-0.06}&-\frac{1}{0.075-0.06}\\-\frac{0.06}{0.075-0.06}&\frac{1}{0.075-0.06}\end{matrix}\right)\left(\begin{matrix}1500\\562.5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-\frac{200}{3}\\-4&\frac{200}{3}\end{matrix}\right)\left(\begin{matrix}1500\\562.5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 1500-\frac{200}{3}\times 562.5\\-4\times 1500+\frac{200}{3}\times 562.5\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30000\\31500\end{matrix}\right)
Do the arithmetic.
x=-30000,y=31500
Extract the matrix elements x and y.
x+y=1500,0.06x+0.075y=562.5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.06x+0.06y=0.06\times 1500,0.06x+0.075y=562.5
To make x and \frac{3x}{50} equal, multiply all terms on each side of the first equation by 0.06 and all terms on each side of the second by 1.
0.06x+0.06y=90,0.06x+0.075y=562.5
Simplify.
0.06x-0.06x+0.06y-0.075y=90-562.5
Subtract 0.06x+0.075y=562.5 from 0.06x+0.06y=90 by subtracting like terms on each side of the equal sign.
0.06y-0.075y=90-562.5
Add \frac{3x}{50} to -\frac{3x}{50}. Terms \frac{3x}{50} and -\frac{3x}{50} cancel out, leaving an equation with only one variable that can be solved.
-0.015y=90-562.5
Add \frac{3y}{50} to -\frac{3y}{40}.
-0.015y=-472.5
Add 90 to -562.5.
y=31500
Divide both sides of the equation by -0.015, which is the same as multiplying both sides by the reciprocal of the fraction.
0.06x+0.075\times 31500=562.5
Substitute 31500 for y in 0.06x+0.075y=562.5. Because the resulting equation contains only one variable, you can solve for x directly.
0.06x+2362.5=562.5
Multiply 0.075 times 31500.
0.06x=-1800
Subtract 2362.5 from both sides of the equation.
x=-30000
Divide both sides of the equation by 0.06, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-30000,y=31500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}