Solve for x, y
x = \frac{299750}{27} = 11101\frac{23}{27} \approx 11101.851851852
y = \frac{78925}{27} = 2923\frac{4}{27} \approx 2923.148148148
Graph
Share
Copied to clipboard
x+y=14025,1850x+500y=22000000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=14025
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+14025
Subtract y from both sides of the equation.
1850\left(-y+14025\right)+500y=22000000
Substitute -y+14025 for x in the other equation, 1850x+500y=22000000.
-1850y+25946250+500y=22000000
Multiply 1850 times -y+14025.
-1350y+25946250=22000000
Add -1850y to 500y.
-1350y=-3946250
Subtract 25946250 from both sides of the equation.
y=\frac{78925}{27}
Divide both sides by -1350.
x=-\frac{78925}{27}+14025
Substitute \frac{78925}{27} for y in x=-y+14025. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{299750}{27}
Add 14025 to -\frac{78925}{27}.
x=\frac{299750}{27},y=\frac{78925}{27}
The system is now solved.
x+y=14025,1850x+500y=22000000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1850&500\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14025\\22000000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1850&500\end{matrix}\right))\left(\begin{matrix}1&1\\1850&500\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1850&500\end{matrix}\right))\left(\begin{matrix}14025\\22000000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1850&500\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1850&500\end{matrix}\right))\left(\begin{matrix}14025\\22000000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1850&500\end{matrix}\right))\left(\begin{matrix}14025\\22000000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{500}{500-1850}&-\frac{1}{500-1850}\\-\frac{1850}{500-1850}&\frac{1}{500-1850}\end{matrix}\right)\left(\begin{matrix}14025\\22000000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{27}&\frac{1}{1350}\\\frac{37}{27}&-\frac{1}{1350}\end{matrix}\right)\left(\begin{matrix}14025\\22000000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{27}\times 14025+\frac{1}{1350}\times 22000000\\\frac{37}{27}\times 14025-\frac{1}{1350}\times 22000000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{299750}{27}\\\frac{78925}{27}\end{matrix}\right)
Do the arithmetic.
x=\frac{299750}{27},y=\frac{78925}{27}
Extract the matrix elements x and y.
x+y=14025,1850x+500y=22000000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1850x+1850y=1850\times 14025,1850x+500y=22000000
To make x and 1850x equal, multiply all terms on each side of the first equation by 1850 and all terms on each side of the second by 1.
1850x+1850y=25946250,1850x+500y=22000000
Simplify.
1850x-1850x+1850y-500y=25946250-22000000
Subtract 1850x+500y=22000000 from 1850x+1850y=25946250 by subtracting like terms on each side of the equal sign.
1850y-500y=25946250-22000000
Add 1850x to -1850x. Terms 1850x and -1850x cancel out, leaving an equation with only one variable that can be solved.
1350y=25946250-22000000
Add 1850y to -500y.
1350y=3946250
Add 25946250 to -22000000.
y=\frac{78925}{27}
Divide both sides by 1350.
1850x+500\times \frac{78925}{27}=22000000
Substitute \frac{78925}{27} for y in 1850x+500y=22000000. Because the resulting equation contains only one variable, you can solve for x directly.
1850x+\frac{39462500}{27}=22000000
Multiply 500 times \frac{78925}{27}.
1850x=\frac{554537500}{27}
Subtract \frac{39462500}{27} from both sides of the equation.
x=\frac{299750}{27}
Divide both sides by 1850.
x=\frac{299750}{27},y=\frac{78925}{27}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}