Solve for x, y
x=1637
y=-537
Graph
Share
Copied to clipboard
x+y=1100,5x+15y=130
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1100
Subtract y from both sides of the equation.
5\left(-y+1100\right)+15y=130
Substitute -y+1100 for x in the other equation, 5x+15y=130.
-5y+5500+15y=130
Multiply 5 times -y+1100.
10y+5500=130
Add -5y to 15y.
10y=-5370
Subtract 5500 from both sides of the equation.
y=-537
Divide both sides by 10.
x=-\left(-537\right)+1100
Substitute -537 for y in x=-y+1100. Because the resulting equation contains only one variable, you can solve for x directly.
x=537+1100
Multiply -1 times -537.
x=1637
Add 1100 to 537.
x=1637,y=-537
The system is now solved.
x+y=1100,5x+15y=130
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\5&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1100\\130\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\5&15\end{matrix}\right))\left(\begin{matrix}1&1\\5&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&15\end{matrix}\right))\left(\begin{matrix}1100\\130\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\5&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&15\end{matrix}\right))\left(\begin{matrix}1100\\130\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&15\end{matrix}\right))\left(\begin{matrix}1100\\130\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-5}&-\frac{1}{15-5}\\-\frac{5}{15-5}&\frac{1}{15-5}\end{matrix}\right)\left(\begin{matrix}1100\\130\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{10}\\-\frac{1}{2}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}1100\\130\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 1100-\frac{1}{10}\times 130\\-\frac{1}{2}\times 1100+\frac{1}{10}\times 130\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1637\\-537\end{matrix}\right)
Do the arithmetic.
x=1637,y=-537
Extract the matrix elements x and y.
x+y=1100,5x+15y=130
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5x+5y=5\times 1100,5x+15y=130
To make x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 1.
5x+5y=5500,5x+15y=130
Simplify.
5x-5x+5y-15y=5500-130
Subtract 5x+15y=130 from 5x+5y=5500 by subtracting like terms on each side of the equal sign.
5y-15y=5500-130
Add 5x to -5x. Terms 5x and -5x cancel out, leaving an equation with only one variable that can be solved.
-10y=5500-130
Add 5y to -15y.
-10y=5370
Add 5500 to -130.
y=-537
Divide both sides by -10.
5x+15\left(-537\right)=130
Substitute -537 for y in 5x+15y=130. Because the resulting equation contains only one variable, you can solve for x directly.
5x-8055=130
Multiply 15 times -537.
5x=8185
Add 8055 to both sides of the equation.
x=1637
Divide both sides by 5.
x=1637,y=-537
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}